medigraphic.com
SPANISH

Revista Cubana de Plantas Medicinales

ISSN 1028-4796 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number 4

Next >>

Rev Cubana Plant Med 2016; 21 (4)

Chemical profile and antibacterial activity of extracts from Peltigera laciniata (Merrill ex Riddle) Gyeln

Martínez M, Mantilla LE, Ricardo TD, Galvis GJH
Full text How to cite this article

Language: Spanish
References: 32
Page: 1-10
PDF size: 186.94 Kb.


Key words:

alkaloids, antibiogram, flavonoids, Peltigera laciniata.

ABSTRACT

Introduction: Due to their content of secondary metabolites such as xanthones, anthraquinones and alkaloids, lichens have been suggested to be a material of high biological potential (e.g. antibiotic and antiviral). Their very promising antibacterial potential may be determined by diffusion antibiograms, the main concern of the present study.
Objective: Evaluate the antibacterial activity of extracts obtained from Peltigera laciniata (Merrill ex Riddle) Gyeln, cutleaf elm.
Methods: The lichenic material was percolated with 96% ethanol. Total alkaloids and total flavonoids were isolated from the crude ethanolic extract by adding 3% HCL and methanol, respectively. Both fractions were monitored by thin-layer chromatography and fractioned by column chromatography. Extracts and fractions were subjected to bioassays against Escherichia coli and Staphylococcus aureus for inhibition haloes, using sultamicillin as control. The assays were conducted 3 times with 2 replications.
Results: Upon chromatographic separation of the alkaloids, an increase was observed in inhibition when compared with the alkaloidal mixture. Fraction A1 displayed inhibition values close to the control. Fraction FT showed lower inhibition values than the other treatments evaluated. The fraction of total flavonoids had a lesser impact on E. coli and S. aureus, but alkaloidal nitrogenated compounds had significant antibacterial activity against Gram-positive microorganisms.
Conclusions: The chemical profile of extracts from the study species revealed the presence of alkaloidal and flavonoidal secondary metabolites, as well as the antimicrobial effect of the alkaloids contained in the extract and the fraction. This confirms the antibacterial pharmacological potential attributed to the protoberberine core.


REFERENCES

  1. Barrero E, Ortega S. Líquenes de la reserva natural integral de Muniellos, Asturias, consejería del medio ambiente, ordenación del territorio e infraestructura del principado de Asturias. KDK ediciones. 2003.

  2. De Valencia ML, Aguirre-CJ. Hongos liquenizados. Trabajo de Grado. Facultad de Ciencias. Universidad Nacional de Colombia, Sede Bogotá. 2002.

  3. Miadlikowska J, François L. Phylogenetic revision of the genus Peltigera (lichenforming ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. Int. J. Plant Sci. 2000;161:925-58.

  4. Torres A, Dor I, Rottem E, et al. n-Alkane and fatty acid variations in the lichen Xanthoria parietina, their photobiont Trebouxia sp. and mycobiont, from Jerusalem hills. Eur. J. Biochem. 2003;270:2120-5.

  5. Rezanka T & Dembitsky V. Novel brominated lipidic compounds from lichens of Central Asia. Phytochemistry. 1999;51:963-8.

  6. Dembitsky VM. Lipids of Lichens. Prog. Lipid Res. 1992;31:373-97.

  7. Dembitsky VM, Bychek IA, Shustov MV, et al. Phospholipid and fatty acid composition of some lichen species. Phytochemistry. 1991;30:837-9.

  8. Dembitsky VM, Pechenkina-Shubina EE, et al. Glycolipids and fatty acids of some seaweeds and marine grasses from the Black Sea. Phytochemistry. 1991;30:2279-83.

  9. Dembitsky VM, Rezanka T, Bychek IA. et al. Identification of fatty acids from Cladonia lichens. Phytochemistry. 1991;30:4015-8.

  10. Dembitsky VM, Rezanka T, Bychek IA. Fatty acid composition of Parmelia lichens. Phytochemistry. 1992;31:841-3.

  11. Dembitsky VM, Rezanka T, Bychek IA. Fatty acid and phospholipids from lichens of the order Leconorales. Phytochemistry. 1992;31:851-3.

  12. Dembitsky VM, Shubina EE, Kashin AG. Phospholipid and fatty acid composition of some Basidiomycetes. Phytochemistry. 1992;31:845-9.

  13. Toledo FJ, García A, León F, et al. Ecología química en hongos y líquenes. Rev Acad Colomb Cienc. 2004;28:509-28.

  14. Armaleo D, Clerc P. Lichen chimeras: DNA analysis suggest that one fungus forms forms two morphotypes. Experimental mycology. 1990;15:1-10.

  15. Toledo FJ, García A, León F, et al. Ecología química en hongos y líquenes. Rev Acad Colomb Cienc. 2004;28:509-28.

  16. Dembitsky VM. Lipids of bryophytes. Prog. Lipid Res. 1993;32:281-56.

  17. Wilson MJ. Weathering of rocks by lichens with special reference to stonework: a review. Land. Reconst. Managem. Series. 2004;3:51-60.

  18. Conti ME. Lichens as bioindicators of air pollution. Sustainable World. 2008;17:111-62.

  19. Klos A, Rajfur M, Stodolka M, et al. Chemometric methods in environmental monitoring using lichens. Ecol. Chem. Engineer. 2006;13:515-22.

  20. Lock O. Investigación fitoquímica: Métodos en el estudio de productos naturales. 2nd ed. Lima, Perú: Fondo Editorial de la Pontificia Universidad Católica del Perú; 1994. 300 pp.

  21. Martínez S, González J, Culebras JM, et al. Los flavonoides: propiedades y acciones antioxidantes. Nutr. Hosp 2002;5:271-8.

  22. National Commettee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility test. Approved standard M2-A5. 1993a. 31.

  23. National Commettee for Clinical Laboratory Standards (NCCLS). Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. Approved standard M7-A3. Villanova, PA.1993b. 30.

  24. National Commettee for Clinical Laboratory Standards (NCCLS). Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard. Villanova, PA. 2001. 29.

  25. Müeller J, Hinton J. A protein free medium for primary isolation of Gocococcus and Meningococcus. Proc. Soc. Esp. Biol. Med. 1941;48:330-3.

  26. Bauer AL, Kirby WMM, Sherris JC, et al. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 1966;45:493-6.

  27. McFarland J. Nephelometer. J. Am. Med. Assoc. 1907;14:1176-8.

  28. Rojas A., Hernández L. Screening for antimicrobial activity of crude drugs extracts and pure natural form Mexican medicial plants. J. Ethnopharmacol. 1992;5:275-83.

  29. Arroyo G. Determinación químico-bromatológica y actividad antimicrobiana de Spondias mombi L. (Ubo). Ciencia e Investigación. 2000;3:59-62.

  30. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters (citado 30 mar 2014). (v 1.3). http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents /EUCAST_breakpoints_v1.3_pdf.pdf

  31. Magalhães AF, Tozzi A, Sales B, et al. Twenty three flavonoids from Lonchocarpus subglaucescens. Phytochemistry. 1996;42:1459-71.

  32. Plaza CM, Díaz de Torres L, Lückingf RK, et al. Antioxidant activity, total phenols and flavonoids of lichens from Venezuelan Andes. Pharm. Pharmacogn. Res. 2014;2:138-47.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Plant Med. 2016;21