medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2018; 21 (1)

Chromium (VI) induces the mutation frequency and loss of heterocigocity in Saccharomyces cerevisiae

Santoyo G
Full text How to cite this article

Language: Spanish
References: 26
Page: 34-39
PDF size: 432.27 Kb.


Key words:

hexavalent chromium, mutation frequency, yeast.

ABSTRACT

Chromium (Cr) is one of the main pollutants in industrial waste, so it has been associated with various damages to human health. Therefore, in this work we analyze the effect of the hexavalent Cr on the frequency of spontaneous mutation (by using the forward mutation reporter CAN1) and the loss of heterozygosity in the yeast Saccharomyces cerevisiae, and in a mutant in the rev3 gene, which codes for the zeta polymerase. The results suggest that Cr (VI) can induce mutation frequency between 20 and 28-fold, at concentrations of 25 and 50 mM, respectively. This mutation frequency also increased in a rev3 mutant, although the same levels were not observed as in the wild strain, suggesting that in addition to rev3, there are other factors also participate during mutation induction in CAN1 marker. Cr also had an effect by increasing the heterozygosity loss of between 50 and 57-fold in the wild-type strain and the rev3 mutant, respectively. These results show that REV3 participates in the mutagenic effect caused Cr (VI), but not in the loss of heterozygosity, in yeast cells.


REFERENCES

  1. Amberg, D.C., Burke, D.J. & Strathern, J.N. (2005). Methods in yeast genetics: a Cold Spring Harbor Laboratory Course Manual. CSHL Press. Cold Spring Harbor, NY.

  2. Aylon, Y. & Kupiec, M. (2004). DSB repair: the yeast paradigm. DNA Repair., 3,797-815. DOI: 10.1016/j.dnarep.2004.04.013

  3. Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J.C. & Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev., 25,335-347. DOI: 10.1111/j.1574- 6976.2001.tb00581.x

  4. Donahue, S.L., Lin, Q., Cao, S., & Ruley, H. E. (2006). Carcinogens induce genome-wide loss of heterozygosity in normal stem cells without persistent chromosomal instability. P.N.A.S., 103,11642- 11646. DOI: 10.1159/000100406

  5. Dudasova, Z., Dudas, A. & Chovanec, M. (2004). Non-homologous endjoining recombination factors of Saccharomyces cerevisiae. FEMS Microbiol. Rev., 28,581-601 DOI: 10.1016/j.femsre.2004.06.001

  6. Harris, G.K. & Shi, X. (2003). Signaling by carcinogenic metals and metal-induced reactive oxygen species. Mutat. Res., 533,183-200. DOI: 10.1016/j.mrfmmm.2003.08.025

  7. Holbeck, S.L. & Strathern, J.N. (1997). A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics., 147,1017-1024. DOI: http://www.genetics.org/content/ genetics/147/3/1017.full.pdf

  8. Holland, S., Lodwig, E., Sideri, T., Reader, T., Clarke, I., Gkargkas, K., Hoyle, D.C., Delneri, D., Oliver S.G., & Avery, S.V. (2007). Application of the comprehensive set of heterozygous yeast deletion mutants to elucidate the molecular basis of cellular chromium toxicity. Genome Biol., 8, R268. DOI: 10.1186/gb- 2007-8-12-r268

  9. Kirpnick-Sobol, Z., Reliene, R., & Schiestl, R.H. (2006). Carcinogenic Cr (VI) and the nutritional supplement Cr (III) induce DNA deletions in yeast and mice. Cancer Res., 66, 3480-3484. DOI: 10.1158/0008-5472.CAN-05-3944

  10. Krogh, B.O. & Symington, L. (2004). Recombination proteins in yeast. Annu. Rev. Genet., 38, 233-271. DOI: 10.1146/annurev. genet.38.072902.091500

  11. Muzumdar, M.D., Dorans, K.J., Chung, K.M., Robbins, R., Tammela, T., Gocheva, V. & Jacks, T. (2016). Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers. Nature Commun., 7,12685. DOI: 10.1038/ncomms12685

  12. Nelson, J. R., Lawrence, C. W., & Hinkle, D. C. (1996). Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science, 272,1646. DOI: 10.1126/science.272.5268.1646

  13. Nestor, A.L., Hollopeter, S.L., Matsui, S.I., & Allison, D. (2007). A model for genetic complementation controlling the chromosomal abnormalities and loss of heterozygosity formation in cancer. Cytogenet. Genome Res., 116, 235-247. https://doi. org/10.1159/000100406

  14. O’Brien, T.J., Ceryak, S. & Patierno, S.R. (2002). Complexities of chromium carcinogenesis: Role of cellular response, repair and recovery mechanisms. Mutat. Res., 533, 3-36. DOI: 10.1016/j. mrfmmm.2003.09.006

  15. O’Brien, T.J., Fornsaglio, J.L., Ceryak, S. & Patierno, S.R. (2003). Effects of hexavalent chromium on the survival and cell cycle distribution of DNA repair-deficient S. cerevisiae. DNA Repair., 1, 617-627. DOI: 10.1016/S1568-7864(02)00078-2

  16. Rajpal, D. K., Wu, X., & Wang, Z. (2000). Alteration of ultravioletinduced mutagenesis in yeast through molecular modulation of the REV3 and REV7 gene expression. Mutat. Res., 461,133-143. DOI: http://dx.doi.org/10.1016/S0921-8777(00)00047-1

  17. Rattray, A., Santoyo, G., Shafer, B. & Strathern, J.N. (2015). Elevated mutation rate during meiosis in Saccharomyces cerevisiae. PLoS Genet., 11,e1004910. DOI: http://dx.doi.org/10.1371/journal. pgen.1004910

  18. Rattray, A.J., & Strathern, J.N. (2003). Error-Prone DNA Polymerases: When making a mistake is the only way to get ahead 1. Annu. Rev. Genet., 37,31-66. DOI: 10.1146/annurev. genet.37.042203.132748

  19. Rattray, A.J., McGill, C.B., Shafer, B.K. & Strathern, J.N. (2001). Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics., 158,109-22. DOI: http://www.genetics.org/content/genetics/158/1/109.full.pdf

  20. Rattray, A.J., Shafer, B.K., McGill, C.B. & Strathern, J.N. (2002). The roles of REV3 and RAD57 in double-strand-break-repair-induced mutagenesis of Saccharomyces cerevisiae. Genetics., 162,1063- 1077. DOI: http://www.genetics.org/content/genetics/162/3/1063. full.pdf

  21. Rothkamm, K., Krüger, I., Thompson, L.H. & Löbrich, M. (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol., 23,5706-5715. DOI: 10.1128/MCB.23.16.5706-5715.2003

  22. Santoyo, G. & Strathern, J. N. (2008). Non-homologous end joining is important for repair of Cr (VI)-induced DNA damage in Saccharomyces cerevisiae. Microbiol. Res., 163,113-119. DOI: http://dx.doi.org/10.1016/j.micres.2007.09.001

  23. Santoyo, G., & Romero, D. (2005). Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiol. Rev., 29,169- 183. DOI: https://doi.org/10.1016/j.fmrre.2004.10.004

  24. Singhal, R. K., Hinkle, D. C., & Lawrence, C. W. (1992). The REV3 gene of Saccharomyces cerevisiae is transcriptionally regulated more like a repair gene than one encoding a DNA polymerase. Mol. Gen. Gen., 236,17-24. DOI: 10.1007/BF00279638

  25. Sonoda, E., Okada, T., Zhao, G. Y., Tateishi, S., Araki, K., Yamaizumi, M., Yagi, T., Verkaik, N. S., van Gent, D. C., Takata, M., & Takeda, S. (2003). Multiple roles of Rev3, the catalytic subunit of polzeta in maintaining genome stability in vertebrates. EMBO J., 22, 3188–3197. DOI 10.1093/emboj/cdg308

  26. Xie, H., Wise, S.S., Holmes, A.L., Xu, B., Wakeman, T.P., Pelsue, S.C., Singh, N.P. & Wise, J.P. (2005). Carcinogenic lead chromate induces DNA double-strand breaks in human lung cells. Mutat. Res., 586,160-172. DOI: 10.1016/j.mrgentox.2005.06.002




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2018;21