medigraphic.com
SPANISH

Revista Mexicana de Cardiología

ISSN 0188-2198 (Print)
En 2019, la Revista Mexicana de Cardiología cambió a Cardiovascular and Metabolic Science

Ver Cardiovascular and Metabolic Science


  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2017, Number 4

<< Back Next >>

Rev Mex Cardiol 2017; 28 (4)

Theoretical geometric generalization of left ventriculogram during cardiac dynamic of clinical application

Rodríguez J, Prieto S, Correa C, Soracipa Y, Forero G, Cifuentes R, Aguirre G
Full text How to cite this article

Language: English
References: 45
Page: 172-179
PDF size: 218.05 Kb.


Key words:

Ventriculogram, fractal, left ventricle.

ABSTRACT

Fractal geometry has proven to be adequate for mathematical description of irregular objects such as the human body. Based on this geometry, an objective and reproducible representation of a left ventricle was previously developed. The aim of this research was to develop a simulation based on this methodology that allows establishing all possible left ventricular dynamics from normality to severe disease. All possible combinations for each state were determined from maximum and minimum values of similarity degrees previously found for normal ventricular structures with mild, moderate and severe disease. The whole spectrum of ventricular dynamics between normality and disease during cardiac dynamic was quantified. There were found out 2,165 possible prototypes of ventricular structure: 551 of healthy states, 794 of mild and moderate disease, and 820 of severe disease. It was found that the similarity degrees of ventricle measures observed in previous studies were included within the identified prototypes. Thus, a generalization that establishes all possible ventricular fractal prototypes that may be found in clinical practice was developed, which is able to differentiate a normal state from several degrees of disease.


REFERENCES

  1. Mandelbrot B. How Long Is the Coast of Britain? Statistical self-similarity and fractional dimension. Science, New Series. 1967; 156 (3775): 636-638.

  2. Peitgen H. Length area and dimension. Measuring complexity and scaling properties. In: Heinz-Otto P, Hartmut J, Dietmar S. Chaos and fractals: New Frontiers of Science. N.Y.: Springer-Verlag; 1992, pp. 183-228.

  3. Edgar G. Measure, Topology, and Fractal Geometry. Second Edition, Springer Science+Business Media, New York, 2008, pp. 165-216.

  4. Goldberger AL, Rigney DR, West BJ. Chaos and fractals in human physiology. Sci Am. 1990; 262 (2): 42-49.

  5. Goldberger AL, West BJ. Fractals in physiology and medicine. Yale J Biol Med. 1987; 60 (5): 421-435.

  6. Perkiömäki J, Mäkikallio TH, Huikuri HV. Fractal and complexity measures of heart rate variability. Clin Exp Hypertens. 2005; 27 (2-3): 149-158.

  7. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PCh, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA. 2002; 99 (Suppl 1): 2466-2472.

  8. Huikuri HV, Mäkikallio TH, Peng CK, Goldberger AL, Hintze U, Møller M. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation. 2000; 101 (1): 47-53.

  9. Cheng SC, Huang YM. A novel approach to diagnose diabetes based on the fractal characteristics of retinal images. IEEE Trans Inf Technol Biomed. 2003; 7 (3): 163-170.

  10. Harrison TR. Principios de medicina interna. Madrid: McGraw Hill; 1998, pp. 1429-1430.

  11. Pohlman S, Powell K, Obuchowski NA, Chilcote WA, Grundfest-Broniatowski S. Quantitative classification of breast tumors in digitized mammograms. Med Phys. 1996; 23 (8): 1337-1345.

  12. Lefebvre F, Benali H, Gilles R, Kahn E, Di Paola R. A fractal approach to the segmentation of microcalcifications in digital mammograms. Med Phys. 1995; 22 (4): 381-390.

  13. Luzi P, Bianciardi G, Miracco C, De Santi MM, Del Vecchio MT, Alia L et al. Fractal analysis in human pathology. An N Y Acad Sci. 1999; 879: 255-257.

  14. Baish JW, Jain RK. Fractals and cancer. Cancer Res. 2000; 60 (14): 3683-3688.

  15. Gazit Y, Berk DA, Lunig M, Baxter LT, Jain RK. Scale-invariant behavior and vascular network formation in normal and tumor tissue. Phys Rev Lett. 1995; 75 (12): 2428-2431.

  16. Rodríguez J, Prieto S, Ortiz L, Avilán N, Álvarez L, Correa C, Prieto I. Comportamiento fractal del ventrículo izquierdo durante la dinamic cardiac. Rev Colomb Cardiol. 2006; 13 (3): 165-170.

  17. Rodríguez J, Prieto S, Correa C, Bernal P, Alvarez L, Forero G y cols. Diagnóstico Fractal del Ventriculograma Cardiaco Izquierdo: Geometría fractal del ventriculograma durante la dinámica cardiaca. Rev Colomb Cardiol. 2012; 19 (1): 18-24.

  18. Ministerio de salud. Resolución número 8430 de 1993. Colombia.

  19. Kappenberger L. Arrythmia: A Therapeutic Dilemma. En: Computer Simulation and Experimental Assessment of Cardiac Electrophysiology, Futura Publishing Company, Lausanne, 2001, pp. 185-188.

  20. Brogan WC 3rd, Glamann B, Lange RA, Hillis LD. Comparison of single and biplane ventriculography for determination of left ventricular volume and ejection fraction. Am J Cardiol. 1992; 69 (12): 1079-1082.

  21. Dodge HT, Sandler H, Ballew DW, Lord JD Jr. The use of biplane angiocardigraphy for the measurement of left ventricular volume in man. Am Heart J. 1960; 60 (5): 762-776.

  22. Shepertycki TH, Morton BC. A computer graphic-based angiographic model for normal left ventricular contraction in man and its application to the detection of abnormalities in regional wall motion. Circulation. 1983; 68: 1222-1230.

  23. Sheehan FH, Bolson EL, Dodge HT, Mathey DG, Schofer J, Woo HW. Advantages and applications of the centreline method for characterizing regional ventricular function. Circulation. 1986; 74 (2): 293-305.

  24. Sheehan FH, Bolson EL, Dodge HT, Mitten S. Centerline method comparison with other methods for measuring regionalleft ventricular motion. En: Sigwart U, Heintzen PH, editores. Ventricular wall motion. Stuttgart: Georg Thieme; 1984, pp. 139-149.

  25. Rodríguez J. Mathematical law of chaotic cardiac dynamics: Predictions for clinical application. JMMS. 2011; 2 (8): 1050-1059.

  26. Rodríguez J, Correa C, Melo M, Domínguez, D, Prieto S, Cardona DM et al. Chaotic cardiac law: developing predictions of clinical application. J Med Med Sci. 2013; 4 (2): 79-84.

  27. Rodríguez J, Prieto S, Correa C, Bernal P, Puerta G, Vitery S et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Medical Physics. 2010; 10: 1. http://www.biomedcentral.com/1756-6649/10/1

  28. Rodríguez J, Prieto S, Correa C, Posso H, Bernal P, Puerta G y cols. Generalización fractal de células preneoplásicas y cancerígenas del epitelio escamoso cervical. Una nueva metodología de aplicación clínica. Rev Fac Med. 2010; 18 (2): 173-181.

  29. Einstein A. Sobre la teoría de la relatividad y otras aportaciones científicas Sarpe, Madrid, 3a. ed., 1983, pp. 29-32.

  30. Kant I. Crítica de la razón pura. Porrúa, México, 2005, p. 13.

  31. Einstein A. Sobre la teoría de la relatividad y otras aportaciones científicas Sarpe, Madrid, 3a ed., 1983, pp. 78-84.

  32. Feynman R. Leighton RB, Sands M. Comportamiento cuántico. En: Feynman R. Leighton RB, Sands M. Física. Wilmington. Cap 37, Vol 1, Addison-Wesley Iberoamericana S.A.; 1987.

  33. Ballentine LE. Quantum mechanics, a modern development. World Scientific Publishing Co. Pte. Ltd.; Singapore, 1998.

  34. Crutchfield J, Farmer D, Packard N, Shaw R. Caos. En: orden y Caos. Scientific American. Prensa Científica S.A., 1990, pp. 78-90.

  35. Devaney R. A first course in chaotic dynamical systems. Theory and experiment. Perseus Books Publishing, Boston 1993, pp. 114-132.

  36. Feynman R. Los principios de la mecánica estadística. En: Física. Cap. 40. Vol. 1. Addison-Wesley Iberoamericana S.A. 1987.

  37. Tolman R. Principles of statistical mechanics, Eds. Dover, New York, 1979, pp. 524-564.

  38. Rodríguez J, Prieto S, Domínguez D, Melo M, Mendoza F, Correa C et al. Mathematical-physical prediction of cardiac dynamics using the proportional entropy of dynamic systems. J Med Med Sci. 2013; 4 (8): 370-381.

  39. Rodríguez J, Prieto S, Bernal P, Izasa D, Salazar G, Correa C, Soracipa Y. Entropía proporcional aplicada a la evolución de la dinámica cardiaca. Predicciones de aplicación clínica. En: Rodríguez LG, Coordinador. La emergencia de los enfoques de la complejidad en América Latina: desafíos, contribuciones y compromisos para abordar los problemas complejos del siglo XXI. Tomo 1, Buenos Aires: Comunidad Editora Latinoamericana; 2015. pp. 315-344.

  40. Rodríguez J, Bernal P, Prieto P, Correa C, Álvarez L, Pinilla L y cols. Predicción de unión de péptidos de Plasmodium falciparum al HLA clase II. Probabilidad, combinatoria y entropía aplicadas a las proteínas MSP-5 y MSP-6. Archivos de Alergia e Inmunología Clínica. 2013; 44 (1): 7-14.

  41. Rodríguez VJ. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública. 2010; 27 (3): 211-218.

  42. Rodríguez J, Correa C. Predicción temporal de la epidemia de dengue en colombia: dinámica probabilista de la epidemia. Rev Salud Pública. 2009; 11 (3): 443-453.

  43. Velásquez JO, Bohórquez SE, Herrera SC, Cajeli DD, Velásquez DM, de Alonso MM. Geometrical nuclear diagnosis and total paths of cervix cell evolution from normality to cancer. J Can Res Ther. 2015; 11 (1): 98-104.

  44. Correa C, Rodríguez J, Prieto S, Álvarez L, Ospino B, Munévar A et al. Geometric diagnosis of erythrocyte morphophysiology: Geometric diagnosis of erythrocyte. J Med Med Sci. 2012; 3 (11): 715-720.

  45. Rodríguez J, Prieto S, Correa C, Mora J, Bravo J, Soracipa Y, Alvarez LF. Predictions of CD4 lymphocytes’ count in HIV patients from complete blood count. BMC Med Phys. 2013; 13 (1): 3.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Cardiol. 2017;28