medigraphic.com
SPANISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number 1

<< Back Next >>

salud publica mex 2018; 60 (1)

Association of dengue fever with Aedes spp. abundance and climatological effects

Betanzos-Reyes ÁF, Rodríguez MH, Romero-Martínez M, Sesma-Medrano E, Rangel-Flores H, Santos-Luna R
Full text How to cite this article

Language: English
References: 25
Page: 12-20
PDF size: 581.64 Kb.


Key words:

dengue fever, Aedes aegypti, ovitrap, climate, ecological epidemiology, Mexico.

ABSTRACT

Objective. To analyze the association of dengue fever incidence with Aedes mosquito’s abundance, and the effect of climatological and geographical variables, in a region in Morelos State, Mexico. Materials and methods. Weekly data during the period 2010 to 2014 was used. Mosquito abundance was determined using ovitraps. Confirmed dengue cases were obtained from the Epidemiological Surveillance System. Climatic variables were obtained from weather monitoring stations. The correlation between climate variables and ovitraps data was estimated using a multivariate regression model. Results. A correlation of mosquito abundance with dengue fever incidence, and a yearly pattern with seasonal variations were observed. The daily mean temperature, relative humidity and rainfall parameters were associated with mosquito egg abundance. Time lags of three and four weeks between egg counts and dengue fever incidence were observed. Conclusion. Time lags between egg counts and dengue incidence could be useful for prevention and control interventions.


REFERENCES

  1. Morin CW, Comrie AC, and Ernst K. Climate and dengue transmission: evidence and implications. Environmental Health Perspectives 2013; 121(11-12):1264-1272. https://doi.org/10.1289/ehp.1306556

  2. Brady OJ, Golding N, Pigott DM, Kraemer MUG, Messina JO, Reiner RC Jr, et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites & Vectors2014;7:338. https://doi.org/10.1186/1756-3305-7-338

  3. Moreno-Banda GL, Riojas-Rodríguez H, Hurtado-Díaz M, Danis-Lozano R, Rothenberg SJ. Effects of climatic and social factors on dengue incidence in Mexican municipalities in the state of Veracruz. Salud Publica Mex 2017;59(1):41-52. https://doi.org/10.21149/8414

  4. Thai KTD, Anders KL. The role of climate variability and change in the transmission dynamics and geographic distribution of dengue. Exp Biol Med 2011;236:(8)944-954. https://doi.org/10.1258/ebm.2011.010402

  5. Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci U S A 2011;108(18):7460-7465. https://doi.org/0.1073/pnas.1101377108

  6. Aguilar S. Ecología del estado de Morelos, un enfoque geográfico. Ciudad de México: Praxis, 1998.

  7. Contreras-MacBeath T, Boyás JC, Jaramillo F (ed). La Diversidad Biológica en Morelos: Estudio del Estado. México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad y Universidad Autónoma del Estado de Morelos. 2004 [accessed on July 13, 2016]. Available at: http:// www.biodiversidad.gob.mx/region/EEB/pdf/EE_Morelos_2006.pdf

  8. Instituto Nacional de Estadística y Geografía. Censo Nacional 2010. México: Inegi, 2010 [accessed on July 13, 2016]. Available at: http://www. coespomor.gob.mx/investigacion-poblacion/marginacion/1_marginacion.pdf

  9. Instituto Mexicano de Tecnología del Agua. México: IMTA [accessed on July 13, 2016]. Available at: http://www.gob.mx/imta

  10. Norma Oficial Mexicana. NOM-032-SSA2-2010, para la vigilancia epidemiológica, prevención y control de las enfermedades transmitidas por vector. NOM2003. Available at: http://dof.gob.mx/nota_detalle. php?codigo= 5192591&fecha= 01/06/2011

  11. Secretaria de Salud. Lineamientos para la Vigilancia por Laboratorio de Dengue. Ciudad de México. Instituto de Diagnóstico y Referencia Epidemiológicos, 2012 [accessed on February 25, 2017]. Available from: https:// www.gob.mx/cms/uploads/attachment/file/23789/Lineamientos_para_la_ vigilancia_epidemiologica_de_dengue.pdf

  12. Secretaría de Salud. Criterios de Operación para la Red Nacional de Laboratorios de Salud Pública. InDRE-RNLSP. 2012 [accessed on November 18, 2015]. Available at: https://www.gob.mx/cms/uploads/attachment/ file/159067/Criterios_de_operacion_para_la_RNLSP.pdf

  13. Dirección General de Epidemiología. Panorama Epidemiológico de Dengue 2015; Semana Epidemiológica 40. México: DGE, 2015 [accessed on July 13, 2016]. Available at: https://www.gob.mx/salud/documentos/ dirección-general-de-epidemiooogía-panorarma-epidemiologico-dedengue- 2015-semana-epidemiologica-40

  14. Barrera R, Amador M, MacKay AJ. Population Dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. Plos Neglected Tropical Diseases 2011; 5(12):e1378. https:// doi.org/10.1371/journal.pntd.0001378

  15. Dibo MR, Chierotti AP, Ferrari MS, Mendonça Al, Chiaravalloti-Neto F. Study of the relationship between Aedes (Stegomyia) aegypti egg and adult densities, dengue fever and climate in Mirassol, state of São Paulo, Brazil. Mem Inst Oswaldo Cruz 2008;103(6):554-560. https://doi.org/10.1590/ S0074-02762008000600008

  16. Canyon DV, Muller R, Hii JLK. Aedes aegypti disregard humidity-related conditions with adequate nutrition. Tropical Biomedicine 2013;30(1):1-8.

  17. Mogi M, Khamboonruang C, Choochote W. Ovitrap surveys of dengue vector mosquitoes in Chiang Mai, northern Thailand: seasonal shits in relative abundance of Aedes albopictus and Ae. aegypti. Med Vet Entomol 1988;2:319-324. https://doi.org/10.1111/j.1365-2915.1988.tb00203.x

  18. Troyo A, Fuller DO, Calderon-Arguedas O, Solano ME, Beier JC. Urban structure and dengue incidence in Puntarenas, Costa Rica. Singapore Journal of Tropical Geography 2009; 30(2):265-282. https://doi.org/10.1111/ j.1467-9493.2009.00367.x

  19. Gubler DJ. Surveillance for dengue and dengue hemorrhagic fever. PAHO Bull 1989;23:397-404.

  20. de Melo DPO, Scherrer LR, Eiras AE. Dengue fever occurrence and vector detection by larval survey, ovitrap and mosquiTRAP: a space-time clusters analysis. PLoS ONE:7(7): e42125. https://doi.org/10.1371/journal. pone.0042125

  21. Phuc H, Andreasen M, Burton R, Vass C, Epton M, Pepe G, et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biology 2007;5:11. https://doi.org/10.1186/1741-7007-5-11

  22. Ellis AM, Garcia AJ, DA Focks, Morrison AC, Scott TW. Parameterization and sensitivity analysis of a complex simulation model for mosquito population dynamics, dengue transmission, and their control. Am J Trop Med Hyg 2011;85(2):257-264. https://doi.org/10.4269/ajtmh.2011.10-0516

  23. Bejarán R, de Garín A, Schweigmann N. Aplicación de la predicción metereológica para el pronóstico de la abundancia potencial del Aedes aegypti en Buenos Aires. Terra Livre São Paulo 2003;19 (20):171-178.

  24. Azil AH, Long SA, Ritchie SA, Williams CR. The development of predictive tools for pre-emptive dengue vector control: a study of Aedes aegypti abundance and meteorological variables in North Queensland, Australia. Tropical Med & Intern Health 2010;15(10):1190-1197. https:// doi.org/10.1111/j.1365-3156.2010.02592.x

  25. Hernández-Ávila JE, Rodríguez MH, Santos-Luna R, Sánchez-Castañeda V, Román-Pérez S, Ríos-Salgado H, et al. Nation-Wide, Web-Based, Geographic Information System for the Integrated Surveillance and Control of Dengue Fever in Mexico. PLoS ONE 2013;8(8): e70231. https://doi. org/10.1371/journal.pone.0070231




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2018;60