medigraphic.com
SPANISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number 1

<< Back Next >>

salud publica mex 2018; 60 (1)

Pathogen-insect interaction candidate molecules for transmission-blocking control strategies of vector borne diseases

Zumaya-Estrada FA, Rodríguez MC, Rodríguez MH
Full text How to cite this article

Language: English
References: 61
Page: 77-85
PDF size: 501.07 Kb.


Key words:

immunity, arthropods, vector control, transmission.

ABSTRACT

Objective. To analyze the current knowledge of pathogeninsect interactions amenable for the design of molecularbased control strategies of vector-borne diseases. Materials and methods. We examined malaria, dengue, and Chagas disease pathogens and insect molecules that participate in interactions during their vectors infection. Results. Pathogen molecules that participate in the insect intestine invasion and induced vector immune molecules are presented, and their inclusion in transmission blocking vaccines (TBV) and in genetically modify insect (GMI) vectors or symbiotic bacteria are discussed. Conclusion. Disruption of processes by blocking vector-pathogen interactions provides several candidates for molecular control strategies, but TBV and GMI efficacies are still limited and other secondary effects of GMI (improving transmission of other pathogens, affectation of other organisms) should be discarded.


REFERENCES

  1. World Health Organization. Vector-borne diseases. Geneva: WHO 2016. Available from: http://www.who.int/mediacentre/factsheets/fs387/en/

  2. White N. Antimalarial drug resistance and mortality in falciparum malaria. Trop Med Int Health 1999;4(7):469-470. https://doi.org/10.1046/j.1365- 3156.1999.00435.x

  3. Kelly-Hope L, Ranson H, Hemingway J. Lessons from the past: managing insecticide resistance in malaria control and eradication programmes. Lancet Infect Dis 2008;8(6):387-389. https://doi.org/10.1016/S1473- 3099(08)70045-8

  4. Mougabure-Cueto G, Picollo MI. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 2015;149:70- 85. https://doi.org/10.1016/j.actatropica.2015.05.014

  5. Gyawali N, Bradbury RS, Taylor-Robinson AW. The global spread of Zika virus: is public and media concern justified in regions currently unaffected? Infect Dis Poverty 2016;5:37. https://doi.org/10.1186/s40249-016-0132-y

  6. Nsoesie EO, Kraemer MU, Golding N, Pigott DM, Brady OJ, Moyes CL, et al. Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. Euro Surveill 2016;21(20):pii=30234. https://doi. org/10.2807/1560-7917.es.2016.21.20.30234

  7. Londono-Renteria B, Troupin A, Colpitts TM. Arbovirosis and potential transmission blocking vaccines. Parasit Vectors 2016;9:516. https://doi. org/10.1186/s13071-016-1802-0

  8. World Health Organization . World Malaria Report 2015. Geneva: WHO 2015 Available from: http://www.who.int/malaria/publications/worldmalaria- report-2015/report/en/

  9. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature 2013;496(7446):504-507. https://doi.org/10.1038/nature12060

  10. World Health Organization . Chagas disease (American trypanosomiasis). Geneva: WHO, 2016 Available from: http://www.who.int/mediacentre/ factsheets/fs340/en/

  11. Lehane MJ. Peritrophic matrix structure and function. Annu Rev Entomol 1997;42:525-550. https://doi.org/10.1146/annurev.ento.42.1.525

  12. Gutierrez-Cabrera AE, Cordoba-Aguilar A, Zenteno E, Lowenberger C, Espinoza B. Origin, evolution and function of the hemipteran perimicrovillar membrane with emphasis on Reduviidae that transmit Chagas disease. Bull Entomol Res 2016;106(3):279-291. https://doi.org/10.1017/ S0007485315000929

  13. Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol 2007;25:697-743. https://doi.org/10.1146/annurev. immunol.25.022106.141615

  14. Hernandez-Martinez S, Lanz H, Rodriguez MH, Gonzalez-Ceron L, Tsutsumi V. Cellular-mediated reactions to foreign organisms inoculated into the hemocoel of Anopheles albimanus (Diptera: Culicidae). J Med Entomol 2002;39(1):61-69. https://doi.org/10.1603/0022-2585-39.1.61

  15. de Azambuja P, Garcia ES, Ratcliffe NA. Aspects of classification of Hemiptera hemocytes from six triatomine species. Mem Inst Oswaldo Cruz 1991;86(1):1-10. https://doi.org/10.1590/S0074- 02761991000100002

  16. Clayton AM, Dong Y, Dimopoulos G. The Anopheles innate immune system in the defense against malaria infection. J Innate Immun 2014;6:169-181. https://doi.org/10.1159/000353602

  17. Sinden RE. The cell biology of malaria infection of mosquito: advances and opportunities. Cell Microbiol 2015;17(4):451-466. https://doi. org/10.1111/cmi.12413

  18. Kaslow DC. Immunogenicity of Plasmodium falciparum sexual stage antigens: implications for the design of a transmission blocking vaccine. Immunol Lett 1990;25(1-3):83-86. https://doi.org/10.1016/0165- 2478(90)90096-9

  19. van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JA, Dodemont HJ, et al. A central role for P48/45 in malaria parasite male gamete fertility. Cell 2001;104(1):153-164. https://doi.org/10.1016/S0092-8674(01)00199-4

  20. Tomas AM, Margos G, Dimopoulos G, van Lin LH, de Koning-Ward TF, Sinha R, et al. P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions. EMBO J 2001;20(15):3975- 3983. https://doi.org/10.1093/emboj/20.15.3975

  21. Lavazec C, Boudin C, Lacroix R, Bonnet S, Diop A, Thiberge S, et al. Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparum transmission-blocking vaccine. Infect Immun 2007;75:1635- 1642. https://doi.org/10.1128/IAI.00864-06

  22. Rodriguez M del C, Martinez-Barnetche J, Alvarado-Delgado A, Batista C, Argotte-Ramos RS, Hernandez-Martinez S, et al. The surface protein Pvs25 of Plasmodium vivax ookinetes interacts with calreticulin on the midgut apical surface of the malaria vector Anopheles albimanus. Mol Biochem Parasitol 2007;153(2):167-177. https://doi.org/10.1016/j. molbiopara.2007.03.002

  23. Gonzalez-Lazaro M, Dinglasan RR, Hernandez-Hernandez F de L, Rodriguez MH, Laclaustra M, Jacobs-Lorena M, et al. Anopheles gambiae Croquemort SCRBQ2, expression profile in the mosquito and its potential interaction with the malaria parasite Plasmodium berghei. Insect Biochem Mol Biol 2009;39(5-6):395-402. https://doi.org/10.1016/j.ibmb.2009.03.008

  24. Lecona-Valera AN, Tao D, Rodriguez MH, Lopez T, Dinglasan RR, Rodriguez MC. An antibody against an Anopheles albimanus midgut myosin reduces Plasmodium berghei oocyst development. Parasit Vectors 2016;9(2):274. https://doi.org/10.1186/s13071-016-1548-8

  25. Armistead JS, Morlais I, Mathias DK, Jardim JG, Joy J, Fridman A, et al. Antibodies to a single, conserved epitope in Anopheles APN1 inhibit universal transmission of Plasmodium falciparum and Plasmodium vivax malaria. Infect Immun 2014;82(2):818-829. https://doi.org/10.1128/ IAI.01222-13

  26. Garver LS, Dong Y, Dimopoulos G. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species. PLoS Pathog 2009;5(3):e1000335. https://doi.org/10.1371/journal.ppat.1000335

  27. Dimopoulos G, Richman A, Muller HM, Kafatos FC. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci U S A 1997;94(21):11508-11513. https://doi. org/10.1073/pnas.94.21.11508

  28. Rao XJ, Ling E, Yu XQ. The role of lysozyme in the prophenoloxidase activation system of Manduca sexta: an in vitro approach. Dev Comp Immunol 2010;34(3):264-271. https://doi.org/10.1016/j.dci.2009.10.004

  29. Castillo JC, Ferreira ABB, Trisnadi N, Barillas-Mury C. Activation of mosquito complement antiplasmodial response requires cellular immunity. Science Immunology 2017;2(7):eaal1505. https://doi.org/10.1126/sciimmunol. aal1505

  30. Hillyer JF, Schmidt SL, Christensen BM. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti. J Parasitol 2003;89(1):62-69. https://doi. org/10.1645/0022-3395(2003)089[0062:RPAMOB]2.0.CO;2

  31. Dong Y, Das S, Cirimotich C, Souza-Neto JA, McLean KJ, Dimopoulos G. Engineered anopheles immunity to Plasmodium infection. PLoS Pathog 2011;7(12):e1002458. https://doi.org/10.1371/journal.ppat.1002458

  32. Volohonsky G, Hopp AK, Saenger M, Soichot J, Scholze H, Boch J, et al. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae. PLoS Pathog 2017;13(1):e1006113. https:// doi.org/10.1371/journal.ppat.1006113

  33. Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 2010;329(5997):1353-1355. https://doi.org/10.1126/ science.1190689

  34. Rodriguez MC, Zamudio F, Torres JA, Gonzalez-Ceron L, Possani LD, Rodriguez MH. Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium berghei. Exp Parasitol 1995;80(4):596-604. https://doi.org/10.1006/expr.1995.1075

  35. Carballar-Lejarazu R, Rodriguez MH, de la Cruz Hernandez-Hernandez F, Ramos-Castaneda J, Possani LD, Zurita-Ortega M, et al. Recombinant scorpine: a multifunctional antimicrobial peptide with activity against different pathogens. Cell Mol Life Sci 2008;65(19):3081-3092. https://doi. org/10.1007/s00018-008-8250-8

  36. Kokoza V, Ahmed A, Woon Shin S, Okafor N, Zou Z, Raikhel AS. Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A 2010;107(18):8111-8116. https://doi.org/10.1073/ pnas.1003056107

  37. Salazar MI, Richardson JH, Sanchez-Vargas I, Olson KE, Beaty BJ. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 2007;7:9. https://doi.org/10.1186/1471-2180-7-9

  38. Takhampunya R, Padmanabhan R, Ubol S. Antiviral action of nitric oxide on dengue virus type 2 replication. J Gen Virol 2006;87:3003-3011. https:// doi.org/10.1099/vir.0.81880-0

  39. Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 2008;4(7):e1000098. https://doi. org/10.1371/journal.ppat.1000098

  40. Jupatanakul N, Sim S, Anglero-Rodriguez YI, Souza-Neto J, Das S, Poti KE, et al. Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus. PLoS Negl Trop Dis 2017;11(1):e0005187. https://doi. org/10.1371/journal.pntd.0005187

  41. Blair CD. Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiol 2011;6(3):265- 277. https://doi.org/10.2217/fmb.11.11

  42. Sanchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa- Solomieu V, Wilusz J, et al. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog 2009;5(2):e1000299. https://doi.org/10.1371/journal.ppat.1000299

  43. Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, et al. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci U S A 2006;103(11):4198-4203. https://doi.org/10.1073/pnas.0600479103

  44. Mathur G, Sanchez-Vargas I, Alvarez D, Olson KE, Marinotti O, James AA. Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 2010;19(6):753-763. https://doi.org/10.1111/j.1365-2583.2010.01032.x

  45. Kollien AH, Schaub GA. The development of Trypanosoma cruzi in triatominae. Parasitol Today 2000;16(9):381-387. https://doi.org/10.1016/ S0169-4758(00)01724-5

  46. Garcia E, Gonzalez M, Azambuja P. Biological factors involving Trypanosoma cruzi life cycle in the invertebrate vector, Rhodnius prolixus. Mem Inst Oswaldo Cruz 1999;94(suppl 1):213-216. https://doi.org/10.1590/S0074- 02761999000700033

  47. Gonzalez MS, Souza MS, Garcia ES, Nogueira NF, Mello CB, Canepa GE, et al. Trypanosoma cruzi TcSMUG L-surface mucins promote development and infectivity in the triatomine vector Rhodnius prolixus. PLoS Negl Trop Dis 2013;7(11):e2552. https://doi.org/10.1371/journal.pntd.0002552

  48. Azambuja P, Feder D, Garcia ES. Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol 2004;107(1-2):89-96. https:// doi.org/10.1016/j.exppara.2004.04.007

  49. Mello CB, Garcia ES, Ratcliffe NA, Azambuja P. Trypanosoma cruzi and Trypanosoma rangeli: interplay with hemolymph components of Rhodnius prolixus. J Invertebr Pathol 1995;65(3):261-268. https://doi.org/10.1006/ jipa.1995.1040

  50. Garcia ES, Gonzalez MS, de Azambuja P, Baralle FE, Fraidenraich D, Torres HN, et al. Induction of Trypanosoma cruzi metacyclogenesis in the gut of the hematophagous insect vector, Rhodnius prolixus, by hemoglobin and peptides carrying alpha D-globin sequences. Exp Parasitol 1995;81(3):255- 261. https://doi.org/10.1006/expr.1995.1116

  51. Mesquita RD, Vionette-Amaral RJ, Lowenberger C, Rivera-Pomar R, Monteiro FA, Minx P, et al. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci U S A 2015;112(48):14936-14941. https://doi. org/10.1073/pnas.1506226112

  52. Whitten MM, Mello CB, Gomes SA, Nigam Y, Azambuja P, Garcia ES, et al. Role of superoxide and reactive nitrogen intermediates in Rhodnius prolixus (Reduviidae)/Trypanosoma rangeli interactions. Exp Parasitol 2001;98(1):44-57. https://doi.org/10.1006/expr.2001.4615

  53. Waniek PJ, Jansen AM, Araujo CA. Trypanosoma cruzi infection modulates the expression of Triatoma brasiliensis def1 in the midgut. Vector Borne Zoonotic Dis 2011;11(7):845-847. https://doi.org/10.1089/vbz.2010.0020

  54. Fieck A, Hurwitz I, Kang AS, Durvasula R. Trypanosoma cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp Parasitol 2010;125(4):342-347. https:// doi.org/10.1016/j.exppara.2010.02.016

  55. Baines S. The role of the symbiotic bacteria in the nutrition of Rhodnius prolixus. J Exp Biol 1956;33:533–541.

  56. Hurwitz I, Fieck A, Durvasula R. Antimicrobial peptide delivery strategies: use of recombinant antimicrobial peptides in paratransgenic control systems. Curr Drug Targets 2012;13(16):1173-1180. https://doi. org/10.2174/138945012802002366

  57. Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci U S A 1997;94(7):3274-3278. https://doi.org/10.1073/pnas.94.7.3274

  58. Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci 2003;270(1518):921-928. https://doi.org/10.1098/rspb.2002.2319

  59. Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods 2013;10:957-963. https://doi.org/10.1038/ nmeth.2649

  60. Esvelt KM, Smidler AL, Catteruccia F, Church GM. Concerning RNA-guided gene drives for the alteration of wild populations. Elife 2014;3:e03401. https://doi.org/10.7554/eLife.03401

  61. Oye KA, Esvelt K, Appleton E, Catteruccia F, Church G, Kuiken T, et al. Biotechnology. Regulating gene drives. Science 2014;345(6197):626-628. https://doi.org/10.1126/science.1254287




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2018;60