medigraphic.com
SPANISH

Revista Mexicana de Neurociencia

Academia Mexicana de Neurología, A.C.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number 1

<< Back Next >>

Rev Mex Neuroci 2018; 19 (1)

Factorial structure of The Survey Autobiographical Memory (SAM) in a sample of Colombian population

Gaviria-Castaño G, Dominguez-Lara S, Tamayo-Agudelo W
Full text How to cite this article

Language: Spanish
References: 41
Page: 23-36
PDF size: 408.15 Kb.


Key words:

Autobiographical memory, factor analysis, psychometrics.

ABSTRACT

Introduction: Autobiographical Memory (AM) comprises the personal recollections of events and experiences of the past, imagined events and future goals. Such recollections support narrow relations with diverse psychological and emotional processes that allow a suitable functioning in the daily life. The interest of diverse areas has been to understand the mechanisms associated with the normal and upset functioning of the AM. Colombian context, one does not possess instruments of auto report standardized for the evaluation of the AM.
Objective: The main purpose of this study is to establish the psychometric properties and the factor structure of The Survey Autobiographical Memory (SAM) in a sample of the Colombian population.
Methods: This was a cross-sectional study in which 260 subjects from the general population were assessed using The Survey Autobiographical Memory.
Results: Different models of measurement were evaluated. Results show that the configuration of the SAM who better represents the evaluated construct is that of four related factors: episodic and semantic memory, spatial memory and episodic future thinking, with acceptable ordinal alpha coefficients.
Conclusions: The SAM is a test with evidences of validity related to his internal structure. Furthermore, it is possible to be useful to understand diverse aspects of the AM in clinical and research areas.


REFERENCES

  1. Palombo D, L Williams, H Abdi, B Levine. “The survey of autobiographical memory (SAM): A novel measure of trait mnemonics in everyday life”, in Cortex 49, 6 (2013): 1,526-1,540. Doi: 10.1016/j. cortex.2012.08.023

  2. Conway MA and CW Pleydell-Pearce. “The construction of autobiographical memories in the selfmemory system” in Psychol Rev. 107, 2 (2000): 261-288. Doi: 10.1037/0033-295X.107.2.261

  3. Destun L and N Kuiper N. “Autobiographical memory and recovered memory therapy: integrating cognitive, clinical, and individual difference perspectives” in Clin Psychol Rev. 16, 5 (1996): 421-450. Doi: 10.1016/0272-7358(96)00022-0

  4. Fivush R and K Nelson. “Culture and language in the emergence of autobiographical memory” in Psychol Sci. 15, 9 (2004): 573-677. Doi: 10.1111/j.0956-7976.2004.00722.x

  5. Valentino K. “A developmental psychopathology model of overgeneral autobiographical memory” in Dev Rev. 31 (2011): 32–54. Doi: 10.1016/j.dr.2011.05.001

  6. Montero I and OG León. “A guide for naming research studies in Psychology” in Int J Clin Health Psychol. 7 (2007): 847–862. Recuperado de http://www.aepc.es/ijchp/articulos_pdf/ijchp-256.pdf

  7. Cortina, JM. “What is Coefficient Alpha? An Examination of theory and Applications” in J of Appl Psychol. 78, 1 (1993): 98-104.

  8. Frias-Navarro, D and M Pascual. “Prácticas del análisis factorial exploratorio (AFE) en las investigaciones sobre conducta del consumidor y marketing” in Suma Psicol. 19, 1 (2012): 47-58.

  9. Terwee CB, SD Bot, MR de Boer, DA van der Windt, DL Knol, J Dekker, et al. “Quality criteria were proposed for measurement properties of health status questionnaires” in J Clin Epidemiol. 60, 1 (2007): 34-42.

  10. Bentler, PM, Wu EJC. EQS 6.2 for windows [Statistical Program]. Encino, CA: Multivariate Software, Inc., 2012.

  11. Lee, SY, WY Poon, PM Bentle. “A two-stage estimation of structural equation models with continuous and polytomous variables” in Br J Math Stat Psychol. 48, 2 (1995): 339–58. Doi: 10.1111/ j.2044-8317.1995.tb01067.x

  12. Domínguez-Lara, S. “¿Matrices Policóricas/Tetracóricas o Matrices Pearson? Un estudio metodológico” in Rev Argent Cienc Comport. 6, 1 (2014): 39-48. Recuperado de https://revistas.unc. edu. ar/index.php/racc/article/view/6357

  13. Satorra, A, PM Bentler. “Corrections to test statistics and standard errors in covariance structure analysis” in Latent variables analysis: Applications for developmental research Thousand Oaks, eds. A von Eye, CC Clogg. CA: Sage, 1994: 399-419.

  14. Lance, C, B Dawson, D Birkelbach, B Hoffman. “Method effects, measurement error, and substantive conclusions” in Organ Res Methods 13, 3 (2010): 435-455. Doi: 10.1177/1094428109352528

  15. Podsakoff, P, S MacKenzie, J Lee, N Podsakoff. “Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies” in J Appl Psychol. 88, 5 (2003): 879- 903. Doi: 10.1037/0021-9010.88.5.879

  16. Reise, SP. “The rediscovery of bifactor measurement models” in Multivariate Behav Res. 47, 5 (2012); 47(5): 667- 96. Doi: 10.1080/00273171.2012.715555

  17. Zinbarg RE, Yovel I, Revelle W, McDonald RP. Estimating generalizability to a latent variable common to all of a scale’s indicators: A comparison of estimators for h. Appl Psychol Meas 2006; 30(2): 121-144. Doi: 10.1177/0146621605278814

  18. Reise SP, R Scheines, KF Widaman, MG Haviland. “Multidimensionality and structural coefficient bias in structural equation modeling: A bifactor perspective” in Educ Psychol Meas. 73, 1 (2013): 5-26. Doi: 10.1177/0013164412449831

  19. Rodríguez, A, SP Reise, MG Haviland. “Evaluating bifactor models: calculating and interpreting statistical indices” in Psychol Methods. 21, 2 (2016): 137-150. Doi: 10.1037/met0000045

  20. Morgan GB, KJ Hodge, KE Wells, MW Watkins. “Are fit indices biased in favor of bi-factor models in cognitive ability research?: A comparison of fit in correlated factors, higher-order, and bi-factor models via Monte Carlo simulations” in J Intell. 3 (2015): 2-20. Doi: 10.3390/jintelligence3010002

  21. Domínguez-Lara, S and C Merino. “¿Por qué es importante reportar los intervalos de confianza del coeficiente alfa de Cronbach?” en Revista Latinoamericana de Ciencias Sociales, Niñez y Juventud 13, 2 (2015)): 1,326-1328. Recuperado de http://revistaumanizales.cinde.org.co/index.php/Revista-

  22. Domínguez-Lara, S. “Propuesta para el cálculo del Alfa Ordinal y Theta de Armor” en Revista de Investigación en Psicología. 15, 1 (2012): 213-217. Recuperado de http://sisbib.unmsm.edu.pe/ bvrevistas/investigacion_psicologia/v15_n1/pdf/a14v15n1.pdf

  23. Elosua, P, BD Zumbo. “Coeficientes de fiabilidad para escalas de respuesta categórica ordenada” in Psicothema. 20, 4 (2008): 896-901. Recuperado de http://www.psicothema.com/pdf/3572.pdf

  24. McDonald, RP. Test theory: A unified treatment. Mahwah, N.J.: L. Erlbaum Associates, 1999.

  25. Domínguez-Lara, S. “Evaluación de la confiabilidad del constructo mediante el Coeficiente H: breve revisión conceptual y aplicaciones” in Psychologia. 10, 2 (2016): 87-94.

  26. Hancock, GR and RO Mueller. “Rethinking construct reliability within latent variable systems” in Structural equation modeling: Past and present. A Festschrift in honor of Karl G. Jöreskog, eds. R Cudeck, SHC du Toit, D Sörbom. Chicago: Scientific Software International, 2001, 195-261.

  27. Pérez, E and L Medrano. “Análisis Factorial Exploratorio: Bases Conceptuales y Metodológicas” en Rev Argent Cienc Comport. 2, 1 (2010): 58-66.

  28. Meyer, JP. Reliability. New York: Oxford University Press, 2010.

  29. Cheung, GW and RB Rensvold. “Evaluating goodness-of-fit indexes for testing measurement invariance” in Struct Equ Modeling. 9, 2 (2002): 233-255. Doi: 10.1207/S15328007SEM0902_5

  30. Raykov T and GR Hancock. “Examining change in maximal reliability for multiplecomponent measuring instruments” in Br J Math Stat Psychol. 58, 1 (2005): 65–82. Doi: 10.1348/000711005X38753

  31. Tulving, E. “Episodic memory: From mind to brain” in Annu Rev Psychol. 53 (2002): 1-25. Doi: 10.1146/ annurev.psych.53.100901.135114

  32. Kim, H. Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison” in Neuropsychologia. 80 (2016): 35-46. Doi: 10.1016/j. neuropsychologia.2015.11.006

  33. Neil, B. “Spatial Cognition and the Brain” in Ann N Y Acad Sci 1,124 (2008): 77–97. Doi: 10.1196/ annals.1440.002

  34. Schacter, D, D Addis, R Buckner. “Episodic Simulation of Future Events. Concepts, Data, and Applications” in Ann N Y Acad Sci. 1,124 (2008): 39–60. Doi: 10.1196/annals.1440.001

  35. Szpunar, K. “Episodic Future Thought: An Emerging Concept” in Perspect Psychol Sci. 5, 2 (2010): 142-162. Doi: 10.1177/1745691610362350

  36. Cuevas C de las y JL González. “Auto informes y respuestas sesgadas” en Anales de Psiquiatría. 8, 9 (1992): 362-366. Recuperado de http://psicoter.es/_arts/92_A109_09.pdf

  37. Lance, C, B Dawson, D Birkelbach, B Hoffman. “Method effects, measurement error, and substantive conclusions” in Organ Res Methods. 13, 3 (2010): 435-455. Doi: 10.1177/1094428109352528

  38. Domínguez-Lara, S. “¿Ítems Politómicos o Dicotómicos? Un estudio empírico con una escala unidimensional” en Rev Argent Cienc Comport. 5, 3 (2013): 30-37.

  39. Kong, F, Z Zhen, J Li, L Huang, X Wang, Y Song, J Liu. “Sex-related neuroanatomical basis of emotion regulation ability” in PLoS ONE. 9, 5 (2014): e97071. Doi: 10.1371/journal.pone.0097071

  40. Domínguez-Lara, S. “Comparación del autoconcepto entre grupos, ¿sesgo o diferencias?: comentarios a Castillo”, et al, in Rev Chil Pediatr. 87-5 (2016): 436-438.

  41. Dimitrov, DM. “Testing for factorial invariance in the context of construct validation” in Meas Eval Couns Dev. 43, 2 (2010): 121-149.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Neuroci. 2018;19