medigraphic.com
SPANISH

Revista Mexicana de Neurociencia

Academia Mexicana de Neurologνa, A.C.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number 1

<< Back Next >>

Rev Mex Neuroci 2018; 19 (1)

Effects of estradiol or progesterone on principal cells from amygdala complex evaluated in silico

Medina-Maldonado V, Eblen-Zajjur A
Full text How to cite this article

Language: English
References: 44
Page: 44-55
PDF size: 345.65 Kb.


Key words:

Amygdala, principal neuron, GABAA, AMPA, NMDA, estradiol, progesterone.

ABSTRACT

Introduction: Amygdala neuronal responses play a key role in fear conducts. Principal Neuron (PN) is one of the most important generators of the output in the amygdala neuronal network. PN has excitatory connections to other PN and receives inhibitory synapsis from GABAergic interneurons acting on gGABAA, also receives thalamic and cortical inputs which activate postsynaptic gNMDA, gAMPA and gL (L-type Ca2+ channels). It has been proposed that main neurotransmission in amygdala could be modulated by estradiol (ES) and/or progesterone (PRG).
Objetive: To implement a deterministic PN model with reported membrane conductances and to evaluate discharge changes induced by ES and/or PRG.
Methods: Seven different scenarios were tested: a) Control conditions running unchanged membrane ion and synaptic currents; b) 20% reduction in GABAA current for ES effect; c) 20% increase in AMPA and NMDA currents for ES effect; d) b + c; e) 20% reduction AMPA/Kainate for PRG effects; f) 20% increase GABAA current for PRG effects; and, g) e + f.
Results: ES shows a strong excitatory effect more dependent on gGABAA reduction associated with a long lasting increase of gAMPA than for the increase on gAMPA and gNMDA when evaluated separately, however, a combination of these factors, which are the actual situation, shows a more intense and lasting neuronal excitation. PRG shows a strong inhibitory effect avoiding any discharge that was more depended to the fast increase and long lasting effect on gGABAA than due to decrease in gAMPA and gNMDA. Combination of these factors shows no synergic, not even additive inhibitory effects.
Conclusion: These results strongly support the notion that ES and/or PRG participate on amygdala principal neuronal responses involved in fear, anxiety and nocifensive behavior probably associated to gender.


REFERENCES

  1. Nair, S. S., Kim, D. & Pare, D. Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. 421–430 (2013).

  2. Cahill, L. & McGaugh, J. L. Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci. 21, 294–299 (1998).

  3. Davis, M. The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353–375 (1992).

  4. Nair, S. S. Auditory Fear Circuits in the Amygdala – Insights from Computational Models. Amygdala – A Discret. Multitask. Manag. 418 (2012). doi:10.5772/47814

  5. Blair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M. & LeDoux, J. E. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8, 229–242 (2001).

  6. Pape, H.-C. & Pare, D. Plastic Synaptic Networks of the Amygdala for the Acquisition, Expression, and Extinction of Conditioned Fear. Physiol. Rev. 90, 419–463 (2010).

  7. Kim, D., Samarth, P., Feng, F., Pare, D. & Nair, S. S. Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: a biophysical modeling study. Brain Struct. Funct. 221, 2163–2182 (2016).

  8. Faber, E. S., Callister, R. J. & Sah, P. Morphological and electrophysiological properties of principal neurons in the rat lateral amygdala in vitro. J. Neurophysiol. 85, 714–723 (2001).

  9. Sah, P., Faber, E. S. L., Lopez de Armentia, M. & Power, J. The Amygdaloid Complex : Anatomy and Physiology. Physiol. Rev. 83, 803–834 (2003).

  10. Bauer, E. P., Schafe, G. E. & LeDoux, J. E. NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci. 22, 5239–5249 (2002).

  11. Tsvetkov, E., Carlezon, W. A., Benes, F. M., Kandel, E. R. & Bolshakov, V. Y. Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron. 34, 289–300 (2002).

  12. Weisskopf, M. G., Bauer, E. P. & LeDoux, J. E. L-type voltage-gated calcium channels mediate NMDAindependent associative long-term potentiation at thalamic input synapses to the amygdala. J. Neurosci. 19, 10512–10519 (1999).

  13. Barth, C., Villringer, A. & Sacher, J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front. Neurosci. 9, 1–20 (2015).

  14. Smith, S. S., Waterhouse, B. D., Chapin, J. K. & Woodward, D. J. Progesterone alters GABA and glutamate responsiveness: a possible mechanism for its anxiolytic action. Brain Res. 400, 353–359 (1987).

  15. Myers, B., Schulkin, J. & Greenwood-Van Meerveld, B. Sex Steroids Localized to the Amygdala Increase Pain Responses to Visceral Stimulation in Rats. J. Pain. 12, 486–494 (2011).

  16. Barth, D. S. Behavioral NEUROSCIENCE. Behav. Neurosci. (2000).

  17. Wang, M. Neurosteroids and GABA-A receptor function. Front. Endocrinol. (Lausanne). 2, 106–128 (2011).

  18. Myers, B. & Greenwood-Van Meerveld, B. Differential involvement of amygdala corticosteroid receptors in visceral hyperalgesia following acute or repeated stress. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G260-6 (2012).

  19. Nabekura, J., Oomura, Y., Minami, T. & Fukuda, A. Mechanism of the rapid effect of 17beta-estradiol on medial amygdala neurons. Science. 233, 226 (1986).

  20. Walf, A. A. & Frye, C. A. A Review and Update of Mechanisms of Estrogen in the Hippocampus and Amygdala for Anxiety and Depression Behavior. 1097–1111 (2006). doi:10.1038/sj.npp.1301067

  21. Kim, D., Parι, D. & Nair, S. S. Assignment of model amygdala neurons to the fear memory trace depends on competitive synaptic interactions. J. Neurosci. 33, 14354–14358 (2013).

  22. Krasne, F. B., Fanselow, M. S. & Zelikowsky, M. Design of a neurally plausible model of fear learning. Front. Behav. Neurosci. 5, 41 (2011).

  23. Li, G., Nair, S. S. & Quirk, G. J. A biologically realistic network model of acquisition and extinction of conditioned fear associations in lateral amygdala neurons. J.Neurophysiol. 101, 1629–1646 (2009).

  24. Huguenard, J. & McCormick, D. A. Electrophysiology of the Neuron: An Interactive Tutorial. (Oxford University Press, 1997).

  25. Washburn, M. S. & Moises, H. C. Inhibitory responses of rat basolateral amygdaloid neurons recorded in vitro. Neuroscience. 50, 811–830 (1992).

  26. Hausmann, M. & Gόntόrkόn, O. Steroid fluctuations modify functional cerebral asymmetries: The hypothesis of progesterone-mediated interhemispheric decoupling. Neuropsychologia. 38, 1362– 1374 (2000).

  27. van Wingen, G. et al. Progesterone selectively increases amygdala reactivity in women. Mol. Psychiatry. 13, 325–333 (2008).

  28. Adams, M. M., Fink, S. E., Janssen, W. G. M., Shah, R. A. & Morrison, J. H. Estrogen modulates synaptic N-methyl-D-aspartate receptor subunit distribution in the aged hippocampus. J. Comp. Neurol. 474, 419–426 (2004).

  29. Smith, S. S. & Woolley, C. S. Cellular and molecular effects. Clevel. Clin. J. Med. 71, 4–10 (2004).

  30. Foy, M. R. et al. 17-beta-estradiol enhances NMDA receptor-mediated EPSPs and long-term potentiation. J. Neurophysiol. 81, 925–929 (1999).

  31. Gulinello, M., Gong, Q. H., Li, X. & Smith, S. S. Short-term exposure to a neuroactive steroid increases 4 GABAA receptor subunit levels in association with increased anxiety in the female rat. Brain Res. 910, 55–66 (2001).

  32. Cornil, C. a., Ball, G. F. & Balthazart, J. Functional significance of the rapid regulation of brain estrogens: where do estrogens come from? Brain Res. 1126, 2–26 (2012).

  33. Krebs, C. J. et al. Progesterone in Brain Regions Involved in Female Reproductive Behaviors Published by : National Academy of Sciences All use subject to http://about.jstor.org/terms A membrane-associated progesterone-binding protein , 25-Dx , is regulated by progesterone I. (2017).

  34. Singh, M., Su, C. & Ng, S. Non-genomic mechanisms of progesterone action in the brain. Front. Neurosci. 7, 1–7 (2013).

  35. Zhu, Y., Bond, J. & Thomas, P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc. Natl. Acad. Sci. U. S. A. 100, 2237–42 (2003).

  36. Vasudevan, N. & Pfaff, D. W. Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front. Neuroendocrinol. 29, 238–257 (2008).

  37. Storaci, V. & Eblen-Zajjur, A. Nongenomic effect of levothyroxine on the synchronous electrical activity of the spinal dorsal horn in the rat. Somatosens. Mot. Res. 31, 23–27 (2014).

  38. Milad, M. R. et al. The influence of gonadal hormones on conditioned fear extinction in healthy humans. Neuroscience. 168, 652–658 (2011).

  39. Motta, E. et al. Progesterone therapy in women with epilepsy. Pharmacol. Rep. 65, 89–98 (2013).

  40. Najafi, M., Sadeghi, M. M., Mehvari, J., Zare, M. & Akbari, M. Progesterone therapy in women with intractable catamenial epilepsy. Adv. Biomed. Res. 2, 8 (2013).

  41. Maeng, L. & Milad, M. Sex Differences in Anxiety Disorders: Interactions between Fear, Stress, and Gonadal Hormones. Horm. Behav. 76, 106–117 (2015).

  42. Zeidan, M. a et al. Estradiol modulates medial prefrontal cortex and amygdala activity during fear extinction in women and female rats. Biol Psychiatry. 70, 920–927 (2012).

  43. Majewska, M. D., Harrison, N. L., Schwartz, R. D., Barker, J. L. & Paul, S. M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. (80-. ). 232, 1004 LP- 1007 (1986).

  44. Pinna, G. & Rasmusson, A. Ganaxolone improves behavioral deficits in a mouse model of posttraumatic stress disorder. Front. Cell. Neurosci. 8, 1–11 (2014).




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Neuroci. 2018;19