medigraphic.com
SPANISH

Revista de la Facultad de Medicina UNAM

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number 3

<< Back Next >>

Rev Fac Med UNAM 2018; 61 (3)

Is the pathogenesis of the human respiratory syncytial virus a risk factor for the development of childhood asthma?

García CA, Tirado MR, Ambrosio JR
Full text How to cite this article

Language: Spanish
References: 47
Page: 17-30
PDF size: 313.60 Kb.


Key words:

Respiratory syncytial virus, virus diseases, bronchiolitis, bronchial hyperreactivity, asthma.

ABSTRACT

The human respiratory syncytial virus (hRSV) is the main pathogen of respiratory tract infections in children. The se verity of the infection depends on its clinical severity: from uncomplicated upper airway infections, in healthy adults and children, to bronchiolitis and bronchopneumonia that could be developed in children younger than 2 years with risk factors. The virus belongs to the Pneumoviridae family and Orthopneumovirus genus, it is an enveloped virus with a single-stranded RNA genome with a negative polarity that codifies 7 structural proteins (G, F, SH, M, P, N and L) and four non-structural proteins (NS1, NS2, M1, M2). The viral infection has been considered as a risk factor for the development of childhood asthma, which is the most common airway inflammatory disease in children and is characterized by recurrent episodes of lower airway obstruction in the presence of harmless environmental stimuli. The risk increases if the primary infection occurs at an early age and in risk factors such as prematurity and pulmonary broncho-dysplasia. Due to the morbidity and mortality associated with hRSV, since 2008, the use of biopharmaceuticals as Palivizumab for prophylaxis in high-risk patients has been approved. The present review aims to present those factors that could be involved in the development of childhood asthma and their possible link to the presence of hRSV. In addition, we intend to present the potential risks in the population. For a better comprehension of the virus, we present a brief analysis of the viral structure, the induced immune response against the viral infection and the approved drugs in Mexico for treatment and prophylaxis against hRSV.


REFERENCES

  1. Young S, Le Souëf PN, Geelhoed GC, Stick SM, Turner KJ, Landau LI. The influence of a family history of asthma and parental smoking on airway responsiveness in early infancy. N Engl J Med. 1991;324:1168-73.

  2. Hernández D, Zárate K, Tirado R, et al. Estudio piloto de infecciones respiratorias agudas en coinfecciones virles (VSRh, MPVh) y su impacto en las manifestaciones clínicas, diagnósticas y epidemiológicas. Contacto Químico. 2016;16(14):7-13.

  3. Sly PD, Hibbert ME. Childhood asthma following hospitalization with acute viral bronchiolitis in infancy. Pediatr Pulmonol. 1989;7:153-8.

  4. Gorski S, Hufford M, Braciale T. Recent insights into pulmonary repair following virus-induced inflammation of the respiratory tract. Curr Op Virol. 2012;2(3):33-241.

  5. Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD. Asthma. Nat Rev Primers. Nat Rev Dis Primers. 2015;1:15025. doi: 10.1038/nrdp.2015.25.

  6. Pullan C, Hey E. Wheezing, asthma and pulmonary dysfunction 10 years after infection with respiratory syncytial virus in infancy. British Med J. 1982;284:1665-9.

  7. Neeman Kari, Alison Freifeld. Respiratoy syncytial virus in hematopoietic stem cells transplantation and solid-organ transplantation. Curr Infec. 2015;17:1-38.

  8. Lo MS, Brazas RM, Holtzman MJ. Respiratory Syncytial Virus Nonstructural Proteins NS1 and NS2 mediate inhibition of Stat2 expression and Alpha/Beta interferon responsiveness. Virol J. 2005;79(14):9315-9.

  9. Spann K, Tran K, Collins P. Effects of nonstructural proteins NS1 and NS2 of Human Respiratory Syncytial virus on interferon regulatory factor 3, NF-қß, and proinflammatory cytokines. Virol J. 2005;79(9):5353-62.

  10. Malhotra R, Ward M, Bright H, Priest R, Foster MR, Hurle M, et al. Isolation and characterisation of potential respiratory syncytial virus receptors on epithelial cells. Microbes Infect 2003;5:123-33.

  11. Tayyari F, Marchant D, Moraes TJ, Duan W, Mastrangelo P, Hegele RG. Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat Med. 2011;7:1132-5.

  12. Masante C, El Najjar F, Chang A, Jones A, Moncman CL, Dutch RE. The human metapneumovirus small hydrophobic protein has properties consistent with those of a viroporin and can modulate viral fusogenic activity. J Virol. 2014;88(11):6423-33.

  13. Shahriari S, Gordon J, Ghildyal R. Host cytoskeleton in respiratory syncytial virus assembly and budding. Virol J. 2016;13(1):161.

  14. Farrag M, Almajhdi F. Human respiratory sincitial virus: role of innate immunity in clearance and disease progression. Viral Immunol. 2015;29:11-26.

  15. Respiratory Syncytial Virus Activity-United States, July 2011–January 2013;62(08):141-4. Disponible en: https:// www.cdc.gov/mmwr/preview/mmwrhtml/mm6208a1.htm

  16. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532-5.

  17. Peiró T, Patel DF, Akthar S, Gregory LG, Pyle CJ, Harker JA, et al. Neutrophils drive alveolar macrophage IL-1β release during respiratory viral infection. Thorax. 2017;1-11. pii: thoraxjnl-2017-210010. doi: 10.1136/thoraxjnl-2017-210010.

  18. Russel C, Unger S, Walton M. The human immune response to respiratory syncytial virus infection. Clin Microbiol Rev. 2017;30(2):481-502.

  19. Ayukawa H, Matsubara T, Kaneko M, Hasegawa M, Ichiyama T, Furu- kawa S. Expression of CTLA-4 (CD152) in peripheral blood T cells of children with influenza virus infection including encephalopathy in comparison with respiratory syncytial virus infection. Clin Exp Immunol. 2004;137:151-5.

  20. Secretaría de Salud. Información Epidemiológica. Disponible en: https://www.gob.mx/salud/acciones-y-programas/ informacion-epidemiologica

  21. Schneider P. The role of April and BAFF in lymphocyte activation. Curr Op Immunol. 2005;17:282-9.

  22. Shamas A, Kale J, Leber B, Andrews D. Mechanisms of Action of Bcl-2 Family Proteins. Cold Spring Harbor Perspectives Biology. 2013;5:1-21.

  23. Mendoza-Noguez A, Alcázar-González G, Briones-Torres C. Prevalencia de virus respiratorios utilizando la reacción en cadena de la polimerasa (PCR) en tiempo real: experiencia en el laboratorio de patología clínica, médica sur. Investigación Médica Sur. 2014;21(3):124-7.

  24. Wong-Chew RM, Farfán-Quiroz R, Sánchez-Huerta JL, Nava-Frías M, Casasola-Flores J, Santos-Preciado JI. Frecuencia de virus respiratorios y características clínicas de niños que acuden a un hospital en México. Salud Pública. 2010;52(6):228-532.

  25. Guía de Práctica Clínica de Diagnóstico y Tratamiento de Bronquiolitis Aguda en Niñas/Niños y en el Primer Nivel de Atención México, Instituto Mexicano del Seguro Social; Secretaría de Salud; 1 de diciembre del 2015.

  26. FDA. Center for Drug Evaluation and Research. [Consultado: 21 noviembre 2017]. Disponible en: https://www.accessdata. fda.gov/drugsatfda_docs/bla/2003/103770Orig1s5033.pdf

  27. Sommer C, Resch B, Simões EA. Risk factors for severe respiratory syncytial virus lower respiratory tract infection. Open Microbiol J. 2011;5:144-54. doi: 10.2174/ 1874285801105010144.

  28. American Academy of Pediatrics. Update guidance for palivizumab prophylaxis among infants and Young children at increased risk of hospitalization for respiratory syncytial virus infection. 2017;134:1-21.

  29. Guía de Práctica Clínica, Prevención de la Infección por Virus Sincitial Respiratorio en Población de Riesgo, Secretaría de Salud. 2009:1-32.

  30. Reach B. Product review on the monoclonal antibody palivizumab for prevention of respiratory syncytial virus infection. Hum Vaccin Immunother. 2017;13(9):2138-49. doi: 10.1080/21645515.2017.1337614

  31. Groothuis JR, Simoes EA, Levin MJ, Hall CB, Long CE, Rodriguez WJ, et al. Prophylactic administration of respiratory syncytial virus immune globulin to high-risk infants and young children. The Respiratory Syncytial Virus Immune Globulin Study Group. N Engl J Med. 1993;329(21):1524-30.

  32. Junyan Han, Yi Jia, Katsuyuki Takeda, Yoshiki Shiraishi, Masakazu Okamoto, Azzeddine Dakhama, et al. Montelukast during primary infection prevents airway hyperresponsiveness and inflammation after reinfection with respiratory syncytial virus. Am J Respir Crit Care Med. 2010;182(4): 55-63. doi: 10.1164/rccm.200912-1811OC

  33. Liu F, Ouyang J, Sharma AN, Liu S, Yang B, Xiong W, Xu R. Leukotriene inhibitors for bronchiolitis in infants and young children. Cochrane Database of Systematic Reviews. 2015;3:1-40.

  34. Prapphal N, Hantragool S, et al, Efficacy of Montelukast on Treatment of wheezing lower respiratory tract infection in young children with risk of asthma. Pediatr Res. 2011; 70:546-546.

  35. American Academy of Pediatrics. Clinical practice guideline: thee diagnosis, management, and prevention of bronchiolitis. [Consultado: 21 nov 2017]. Disponible en:

  36. http://pediatrics.aappublications.org/content/pediatrics/ early/2014/10/21/peds.2014-2742.full.pdf

  37. Turner TL, Kopp BT, Paul G, Landgrave LC, Hayes D Jr, Tompson R. Respiratory Syncytial virus: Current and emerging treatment options. Clinicoecon Outcomes Res. 2014 Apr 25;6:217-25. doi: 10.2147/CEOR.S60710. eCollection 2014.

  38. Lambrecth B, Hammad H.The Immunology of Asthma. Nat Immunol. 2015;16(1):45-56.

  39. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2017. [Consultado: 21 nov 2017]. Disponible en http://ginasthma.org/2017-gina-report-global- strategy-for-asthma-management-and-prevention/

  40. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. 2009;15:410-6.

  41. Kumar RK, Foster PS, Rosenberg HF. Respiratory viral infection, epithelial cytokines, and innate lymphoid cells in asthma exacerbations. J Leukoc Biol. 2014;96(3):391-6.

  42. Wu P, Hartert T. Evidence for a causal relationship between respiratory syncytial virus infection and asthma. Expert Rev Anti Infecter. 2011;9(9):731-45.

  43. Nuolivirta K, Törmämen S, Teräsjärvi J, Vuononvirta J, Koponen P, Korppi M, et al. Post-bronchiolitis wheezing is associated with toll-like receptor 9 rs187084 gene polymorphism. Sci Rep. 2016;6:1-9. doi: 10.1038/srep31165

  44. Krishnamoorthy N, Khare A, Oriss TB, Raundhal M, Morse C, Yarlagadda M, et al. Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma. Nat Med. 2012;18(10):1-16.

  45. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. 2015;10(5):1-19.

  46. Gomez RS, Guisle-Marsollier I, Bohmwald K, Bueno SM, Kalergis AM. Respiratory Syncytial Virus: pathology, therapeutic drugs and prophylaxis. Immunol Lett. 2014; 162:237-47.

  47. Tortorolo L, Langer A, Polidori G, Vento G, Stampachiacchere B, Aloe L, Piedimonte G. Neurotrophin overexpression in lower airways of infants with respiratory syncytial virus infection. Am J Respir Crit Care Med. 2005;172:233-7.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Fac Med UNAM . 2018;61