medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number S2

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2018; 21 (S2)

Functionalized edible films and coatings

Solano-Doblado LG, Alamilla-Beltrán L, Jiménez-Martínez C
Full text How to cite this article

Language: Spanish
References: 79
Page: 30-42
PDF size: 624.11 Kb.


Key words:

films, packaging, protection, food, development, innovation.

ABSTRACT

Pests and inadequate post-harvest handling has led to losses in horticultural products, therefore the development and production of edible biodegradable films has been sought as an alternative in recent years. These edible films are made with materials such as carbohydrates, proteins, or lipids, with physical and mechanical characteristics similar to the non-degradable packaging, but with the advantage of having a bioactive function as barriers; by adding vegetable extracts, edible biodegradable films may exert antimicrobial activity, protection against UV and visible light, against carriers of antioxidants and/or dyes, along with improving the visual characteristics of the product. Because of these attributes, edible biodegradable films have been referred to as “Intelligent films”, since considerable progress has been observed in their elaboration, such as the presence of colorful sensors capable of detecting chemical changes and the presence of microorganisms in foods, revealing the state in which they are optimal and even if they are or not in an adequate state for consumption. The objective of this work is to make a summary of various research and current trends in the study and development of edible films and coatings, emphasizing their application in the horticultural chain and their effect on fresh and minimally processed foods.


REFERENCES

  1. Aguilar, M. M. (2005). Propiedades físicas y mecánicas de películas biodegradables y su empleo en el recubrimiento de frutos de aguacate. En Tesis de Maestría en Tecnología avanzada (pág. 112). Ciudad de México: Instituto Politécnico Nacional. http:// repositoriodigital.ipn.mx/handle/ 123456789/10573

  2. Aguirre-Cárdenas, M., García-Delgado, P., González-González, R., Jofre Garfias, A. L., Legorreta-Siañez, A.V. & Buenrostro- Zagal, J. F. (2011). Desarrollo y evaluación de una película comestible obtenida del mucílago del nopal (Opuntia ficus indica) utilizada para reducir la tasa de respiración de nopal verdura. In: VIII Congreso Iberoamericano de Ingeniería de Alimentos. Lima, Perú 23 al 26 de octubre. 1-5. pp. https:// dialnet.unirioja.es/servlet/articulo?codigo=4106660

  3. Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry. LWT-Food Science and Technology, 43(6), 837-842. https://doi.org/10.1016/j. lwt.2010.01.021

  4. Arredondo-Ochoa, T. (2012). Diseño de empaques comestibles activos a base de almidón modificado para su posible aplicación en alimentos en fresco (Tesis Maestría). Universidad Autónoma de Querétaro. 1-82. http://hdl.handle.net/123456789/929

  5. Arvanitoyannis, I., Kolokuris, I., Nakayama, A. & Aiba, S. I. (1997). Preparation and study of novel biodegradable blends based on gelatinized starch and 1, 4-trans-polyisoprene (gutta percha) for food packaging or biomedical applications. Carbohydrate Polymers, 34(4), 291-302. https://doi.org/10.1016/S0144- 8617(97)00085-4

  6. Atarés, L., Bonilla, J. & Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 100(4), 678-687. https://doi.org/10.1016/j.jfoodeng.2010.05.018

  7. Avendaño-Romero, G., López-Malo, A. & Paolu, E. (2013). Propiedades del alginato y aplicaciones en alimentos. Temas selectos de Ingeniería de Alimentos, 7(1), 87-96. http://web.udlap.mx/ tsia/files/2013/12/TSIA-71-Avendano-Romero-et-al-2013.pdf

  8. Ávila-Sosa, R., Palou, E., Munguía, M. T. J., Nevárez-Moorillón, G. V., Cruz, A. R. N. & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153(1-2), 66-72. DOI: 10.1016/j. ijfoodmicro.2011.10.017

  9. Badui Dergal, S. & Cejudo Gómez, H. R. T. (2006). Química de los alimentos. Pearson educación, México

  10. Bósquez-Molina, E. & Vernon-Carter, E. J. (2005). Efecto de plastificantes y calcio en la permeabilidad al vapor de agua de películas a base de goma de mezquite y cera de candelilla. Revista Mexicana de Ingeniería Química, 4(2), 157-162. http://www.redalyc.org/articulo.oa?id=62040203

  11. Cagri, A., Ustunol, Z. & Ryser, E. T. (2004). Antimicrobial edible films and coatings. Journal of Food Protection, 67(4), 833-848. DOI: 10.4315/0362-028X-67.4.833

  12. Campos, C. A., Gerschenson, L. N. & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4(6), 849-875. https://doi. org/10.1007/s11947-010-0434-1

  13. Cárdenas, G., Díaz V.J., Meléndrez, M. F., Cruzat C.C. & García Cancino, A. (2009). Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polymer bulletin, 62(4), 511-524. https://doi. org/10.1007/s00289-008-0031-x

  14. Carmona Gallego, J. A., Cordobés, F., Guerrero Conejo, A. F., Martínez, I. & Partal López, P. (2007). Influencia del pH y de la fuerza iónica sobre la gelificación térmica de proteínas de la yema de huevo. Grasas y aceites, 58(3), 289-296. http://hdl.handle. net/11441/54857

  15. Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W., Carvalho, S., Quintas, M. A., Teixeira, J. A. & Vicente, A. A. (2010). Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydrate Polymers, 82(1), 153-159. https://doi. org/10.1016/j.carbpol.2010.04.043

  16. Carpiné, D., Dagostin, J. L. A., Bertan, L. C. & Mafra, M. R. (2015). Development and characterization of soy protein isolate emulsion-based edible films with added coconut oil for olive oil packaging: Barrier, mechanical, and thermal properties. Food and bioprocess technology, 8(8), 1811-1823. https://doi. org/10.1007/s11947-015-1538-4

  17. Cortés Tapia, C. P. (2007) Envases inteligentes. Universidad Andrés Bello, repositorio.unab.cl/xmlui/handle/ria/4352.

  18. Díaz-González R. (2015). Films biodegradables antimicrobianos a base de almidón y gelatina. Universitat Politécnica de Valencia, 1-21. hdl.handle.net/10251/56543

  19. Echeverri, N, Montoya, Ú., Zuluaga, R., Castro, C. & Gañán, P. (2011). Películas de almidón de papa reforzadas con celulosa bacteriana. Revista ReCiTeIA, 11(1) 83-91.

  20. Escobar, D., Sala, A., Silvera, C., Harispe, R. & Márquez, R. (2009). Películas biodegradables y comestibles desarrolladas en base a aislado de proteínas de suero lácteo: estudio de dos métodos de elaboración y del uso de sorbato de potasio como conservador. Revista del Laboratorio tecnológico del Uruguay, 4, 33-36.

  21. Espino-Díaz, M., De Jesús Ornelas-Paz, J., Martínez-Téllez, M. A., Santillán, C., Barbosa-Cánovas, G. V., Zamudio-Flores, P. B. & Olivas, G. I. (2010). Development and characterization of edible films based on mucilage of Opuntia ficus-Indica (l.). Journal of Food Science, 75(6). E347-E352. DOI: 10.1111/j.1750- 3841.2010.01661.x

  22. Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A. & Ibarz, A. (2011). Edible films and coatings: structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. https://doi.org/10.1016/j.tifs.2011.02.004

  23. Fama, L., Rojas, A. M., Goyanes, S. & Gerschenson, L. (2005). Mechanical properties of tapioca-starch edible films containing sorbates. LWT-Food Science and Technology, 38(6), 631-639. https://doi.org/10.1016/j.lwt.2004.07.024

  24. FAO. (2018). Despilfarro de alimentos: datos y cifras clave. Food wastage footprint, 1-5. http://www.fao.org/news/story/es/ item/196450/icode/

  25. Flores, S. K., Costa, D., Yamashita, F., Gerschenson, L. N. & Grossmann, M. V. (2010). Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion. Materials Science and Engineering: C, 30(1), 196-202. https://doi.org/10.1016/j. msec.2009.10.001

  26. Fuciños, C., Míguez, M., Cerqueira, M. A., Costa, M. J., Vicente, A. A., Rúa, M. L. & Pastrana, L. M. (2015). Functional characterization and antimicrobial efficiency assessment of smart nanohydrogels containing natamycin incorporated into polysaccharide-based films. Food and Bioprocess Technology, 8(7), 1430-1441. https://doi.org/10.1007/s11947-015-1506-z

  27. Gontard, N., Duchez, C., Cuq, J. L. & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science & Technology, 29(1), 39-50. https:// doi.org/10.1111/j.1365-2621.1994.tb02045.x

  28. Gruère, G. P. (2012). Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy, 37(2), 191- 198. https://doi.org/10.1016/j.foodpol.2012.01.001

  29. Hibberler R.C.(2006). Mecánica de materiales. 6ta. Edición. Pearson Educación. Mexico. ISBN 970-26-0639-3 pag 93-95.https:// archive.org/details/MecnicaDeMateriales Hibbeler8aEdiciin

  30. Hong, S. I., Park, J. D. & Kim, D. M. (2000). Antimicrobial and physical properties of food packaging films incorporated with some natural compounds. Food Science and Biotechnology, 9(1), 38-42.

  31. Huff, K. (2008). Active and intelligent packaging: innovations for the future. Department of Food Science & Technology. Virginia Polytechnic Institute and State University, Blacksburg, Va, 1-13. https://www.iopp.org/files/public/VirginiaTechKarleigh Huff.pdf

  32. Jaworek, A. T. S. A. & Sobczyk, A. T. (2008). Electrospraying route to nanotechnology: an overview. Journal of electrostatics, 66(3- 4), 197-219. https://doi.org/10.1016/j.elstat.2007.10.001

  33. Jongjareonrak, A., Benjakul, S., Visessanguan, W. & Tanaka, M. (2008). Antioxidative activity and properties of fish skin gelatin films incorporated with BHT and α-tocopherol. Food Hydrocolloids, 22(3), 449-458. https://doi.org/10.1016/j. foodhyd.2007.01.002

  34. Kean, T. & Thanou, M. (2010). Biodegradation, biodistribution and toxicity of chitosan. Advanced drug delivery reviews, 62(1), 3-11. https://doi.org/10.1016/j.addr.2009.09.004

  35. Liu, F., Qin, B., He, L. & Song, R. (2009). Novel starch/chitosan blending membrane: Antibacterial, permeable and mechanical properties. Carbohydrate Polymers, 78(1), 146-150. https:// doi.org/10.1016/j.carbpol.2009.03.021

  36. Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R. & Fernandez, A. (2012). Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science & Technology, 24(1), 19-29. https://doi.org/10.1016/j. tifs.2011.10.001

  37. Loaiza, M., Chávez G. & Sabino M. (2014). Obtención y modificación química de oligosacáridos de quitosano. Revista latinoamericana de Metalurgia y Materiales, S6, 25-26.

  38. López, Á., Rivas, J., Loaiza, M. & Sabino, M. (2010). Degradación de películas plastificadas de quitosano obtenidas a partir de conchas de camarón (L. vannamei). Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 25(2), 133-143. http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid =S0798-40652010000200014

  39. López-Vázquez, E., Brunner, T. A. & Siegrist, M. (2012). Perceived risks and benefits of nanotechnology applied to the food and packaging sector in México. British Food Journal, 114(2), 197-205. https://doi.org/10.1108/00070701211202386

  40. Maciel, V. B., Yoshida, C. M. & Franco, T. T. (2012). Development of a prototype of a colourimetric temperature indicator for monitoring food quality. Journal of food engineering, 111(1), 21-27. https://doi.org/10.1016/j.jfoodeng.2012.01.037

  41. Maki-Díaz, G., Peña-Valdivia, C. B., García-Nava, R., Arévalo- Galarza, M. L., Calderón-Zavala, G. & Anaya-Rosales, S. (2015). Características físicas y químicas de nopal verdura (Opuntia ficus-indica) para exportación y consumo nacional. Agrociencia, 49(1), 31-51. http://www.scielo.org. mx/pdf/agro/v49n1/ v49n1a3.pdf

  42. Márquez, C. J., Trillos, O., Cartagena, J. R. & Cotes, J. M. (2009). Evaluación fisicoquímica y sensorial de frutos de uchuva (Physalis peruviana L.). Vitae, 16(1), 42-48. http://www.scielo. org.co/pdf/vitae/v16n1/v16n1a05.pdf

  43. May Gutiérrez, M. E. (2015). Desarrollo de un recubrimiento comestible a base de mucílago de nopal (Opuntia spp.)(Doctoral dissertation). Universidad Autónoma de Querétaro. ri.uaq.mx/ handle/123456789/2740

  44. McHugh, T. H. (2000). Protein-Lipid interactions in edible films and coatings. Nahrung, 44: 148-151. DOI: 10.1002/1521-3803 (20000501)44:3<148::AID-FOOD148>3.0.CO;2-P

  45. McMurry, J (2004). Química Orgánica. Ed Cengage learning, México D. F.

  46. Mendoza, M. & Caballero, J. I. M. (2006). Estudio y desarrollo de films a base de zeína de maíz, con distintos tipos de plastificantes. Alimentaria: Revista de tecnología e higiene de los alimentos, (372), 86-87.

  47. Mendoza, B., Gómez, E., Hernández, E., Rodríguez, A. & Chavarría, N. (2014). Elaboración y caracterización de películas biodegradables a partir de mucílago de nopal-caseinato de sodio y mucílago de nopal-pectina. In Ciencias Agropecuarias Handbook T-II: Congreso Interdisciplinario de Cuerpos Académicos (pp. 129-136). ECORFAN.

  48. Meza Velázquez, J. A., Guzmán, G. A., García Díaz, C. L., Fortis, H. M., Preciado Rangel, P. & Esparza Rivera, J. R. (2013). Effect of a film of hidroxypropyl methylcellulose- paraffin in Cantaloupe melon (Cucumis melo) stored in cold. Revista Mexicana de Ciencias Agrícolas, 4(2),259-271. http://www. scielo.org.mx/pdf/remexca/v4n2/v4n2a6.pdf

  49. Miranda, S. P., Cárdenas, G., López, D. & Lara-Sagahon, A. V. (2003). Comportamiento de películas de Quitosán compuesto en un modelo de almacenamiento de aguacate. Revista de la Sociedad Química de México, 47(4), 331-336. http://www.scielo.org. mx/pdf/rsqm/v47n4/v47n4a8.pdf

  50. Monroy-Villagrana, A., Cano-Sarmiento, C., Alamilla-Beltrán, L., Hernández-Sánchez, H. & Gutiérrez-López, G. F. (2014). Coupled taguchi-rsm optimization of the conditions to emulsify α-tocopherol in an Arabic gum-maltodextrin matrix by microfluidization. Revista Mexicana de Ingeniería Química, 13(3), 679-688 http://www.scielo.org.mx/pdf/rmiq/ v13n3/v13n3a3.pdf

  51. Montalvo, C., López-Malo, A. & Palou, E. (2012). Películas comestibles de proteína: características, propiedades y aplicaciones. Temas selectos de ingeniería de alimentos, 6(2), 32-46. http://web. udlap.mx/tsia/files/2013/12/TSIA-62Montalvo-et-al-2012.pdf

  52. Montero-Calderón, M., Rojas-Graü, M. A., Soliva-Fortuny R. & Martín-Belloso, O. (2009). Tendencias en el procesado mínimo de frutas y hortalizas frescas. Internal quality profile and influence of packaging conditions on fresh-cut pineapple, 69(3), 48-51. http://www.horticom.com/revistasonline/extras/ extra09/48_51.pdf

  53. Narsaiah, K., Wilson, R. A., Gokul, K., Mandge, H. M., Jha, S. N., Bhadwal, S., Anurag R.K. Malik R.K. & Vij, S. (2015). Effect of bacteriocin-incorporated alginate coating on shelf-life of minimally processed papaya (Carica papaya L.). Postharvest Biology and Technology, 100, 212-218. https:// doi.org/10.1016/j.postharvbio.2014.10.003

  54. Olivas, G. I. & Barbosa-Cánovas, G. V. (2008). Alginate–calcium films: water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT-Food Science and Technology, 41(2), 359-366. https://doi.org/10.1016/j. lwt.2007.02.015

  55. Ortega-Toro, R., Muñoz, A., Talens, P. & Chiralt, A. (2016). Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/ or polyethylene glycol. Food Hydrocolloids, 56, 9-19. https:// doi.org/10.1016/j.foodhyd.2015.11.029

  56. Prasad, P. & Kochhar, A. (2014). Active packaging in food industry: a review. Journal of Environmental Science, Toxicology and Food Technology, 8(5), 1-7. DOI: 10.9790/2402-08530107

  57. Puligundla, P., Jung, J. & Ko, S. (2012). Carbon dioxide sensors for intelligent food packaging applications. Food Control, 25(1), 328-333. https://doi.org/10.1016/j.foodcont.2011.10.043

  58. Ramos-García, M. D. L., Bautista-Baños, S., Barrera-Necha, L. L., Bósquez-Molina, E., Alia-Tejacal, I. & Estrada-Carrillo, M. (2010). Compuestos antimicrobianos adicionados en recubrimientos comestibles para uso en productos hortofrutícolas. Revista mexicana de fitopatología, 28(1), 44-57. http://www.scielo.org.mx/pdf/rmfi/v28n1/v28n1a5.pdf

  59. Rezaei, M. & Motamedzadegan, A. (2015). The Effect of Plasticizers on Mechanical Properties and Water Vapor Permeability of Gelatin- Based Edible Films Containing Clay Nanoparticles. World Journal of Nano Science and Engineering, 5(04), 178. DOI: 10.4236/wjnse.2015.54019

  60. Rhim, J. W. (2004). Physical and mechanical properties of water resistant sodium alginate films. LWT-Food science and technology, 37(3), 323-330. https://doi.org/10.1016/j. lwt.2003.09.008

  61. Rodríguez-Sauceda, R., Rojo-Martínez, G. E., Martínez-Ruiz, R., Piña-Ruiz, H. H., Ramírez-Valverde, B., Vaquera-Huerta, H. & Cong-Hermida, M. D. L. C. (2014). Envases inteligentes para la conservación de alimentos. Ra Ximhai, 10(6), 151-173. http://www.redalyc.org/pdf/461/46132135012.pdf

  62. Rojas-Graü, M., Oms-Oliu, G., Soliva-Fortuny, R. & Martín-Belloso, O. (2009). The use of packaging techniques to maintain freshness in fresh-cut fruits and vegetables: a review. International Journal of Food Science & Technology, 44(5), 875-889. https://doi. org/10.1111/j.1365-2621.2009.01911.x

  63. Rossi-Márquez, G., Han, J.H., García-Almendárez, B., Castaño-Tostado, E. & Regalado-González, C. (2009). Effect of temperature, pH and film thickness on nisin release from antimicrobial whey protein isolate edible films. Journal of the Science of Food and Agriculture, 89(14), 2492-2497. https://doi.org/10.1002/jsfa.3751

  64. Ruiz Avilés, G. (2006). Obtención y caracterización de un polímero biodegradable a partir del almidón de yuca. Ingeniería y ciencia, 2(4). 5-28. http://www.redalyc.org/pdf/835/83520401.pdf

  65. Salinas Salazar, V. M., Trejo Márquez, M. A. & Lira Vargas, A. (2015). Propiedades físicas, mecánicas y de barrera de películas comestibles a base de mucílago de Nopal como alternativa para la aplicación en frutos. Revista Iberoamericana de Tecnología Postcosecha, 16(2), 193-198. http://www.redalyc. org/pdf/813/8134317 6007.pdf

  66. Seol, K. H., Lim, D. G., Jang, A., Jo, C. & Lee, M. (2009). Antimicrobial effect of κ-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5 C. Meat Science, 83(3), 479-483. DOI: 10.1016/j.meatsci.2009.06.029

  67. Sharma, S. & Rao, T. R. (2015). Xanthan gum based edible coating enriched with cinnamic acid prevents browning and extends the shelf-life of fresh-cut pears. LWT-Food Science and Technology, 62(1), 791-800. https://doi.org/10.1016/j. lwt.2014.11.050

  68. Silva-Weiss, A., Ihl, M., Sobral, P. J. A., Gómez-Guillén, M. C. & Bifani, V. (2013). Natural additives in bioactive edible films and coatings: functionality and applications in foods. Food Engineering Reviews, 5(4), 200-216. https://doi.org/10.1007/ s12393-013-9072-5

  69. Solano, A. C. V. & de Rojas Gante, C. (2012). Two different processes to obtain antimicrobial packaging containing natural oils. Food and Bioprocess Technology, 5(6), 2522-2528. https://doi. org/10.1007/s11947-011-0626-3

  70. Sothornvit, R. & Krochta, J. M. (2000). Plasticizer effect on oxygen permeability of β-lactoglobulin films. Journal of Agricultural and Food Chemistry, 48(12), 6298-6302. DOI: 10.1021/ jf000836l

  71. Tokarev, I., Motornov, M. & Minko, S. (2009). Molecular-engineered stimuli-responsive thin polymer film: a platform for the development of integrated multifunctional intelligent materials. Journal of Materials Chemistry, 19(38), 6932-6948. DOI:10.1039/B906765E

  72. Trejo, V., Aragón, N. & Miranda, P. (2001). Estimación de la permeabilidad al vapor de agua en películas a base de quitosán. Revista de la Sociedad Química de México, 45(1), 01-05. http://www.scielo.org.mx/pdf/rsqm/v45n1/v45n1a1.pdf

  73. Vartiainen, J., Vähä-Nissi, M. & Harlin, A. (2014). Biopolymer films and coatings in packaging applications—a review of recent developments. Materials Sciences and applications, 5(10), 708. DOI: 10.4236/msa.2014.510072

  74. Vázquez-Briones, M. C. & Guerrero-Beltrán, J. A., (2013). Recubrimientos de frutas con biopelículas. Temas Selectos de Ingeniería de Alimentos, 7(2), 5-14. http://web.udlap.mx/ tsia/files/2014/12/TSIA-72-Vazquez-Briones-et-al-2013.pdf

  75. Verma, A. K., Singh, V. P. & Vikas, P. (2012). Application of nanotechnology as a tool in animal products processing and marketing: an overview. American Journal of Food Technology, 7(8), 445-451. DOI: 10.3923/ajft.2012.445.451

  76. Wang, H., Zhang, R., Zhang, H., Jiang, S., Liu, H., Sun, M. & Jiang, S. (2015). Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly (vinyl alcohol). Carbohydrate polymers, 127, 64-71. DOI: 10.1016/j. carbpol.2015.03.058

  77. Weiss, J., Takhistov, P. & McClements, D. J. (2006). Functional materials in food nanotechnology. Journal of Food Science, 71(9),107- 116. https://doi.org/10.1111/j.1750-3841.2006.00195.x

  78. Yang, L. & Paulson, A. T. (2000a). Effects of lipids on mechanical and moisture barrier properties of edible gellan film. Food research international, 33(7), 571-578. https://doi.org/10.1016/ S0963-9969(00)00093-4

  79. Yang, L. & Paulson, A. T. (2000b). Mechanical and water vapour barrier properties of edible gellan films. Food Research International, 33(7), 563-570. https://doi.org/10.1016/S0963- 9969(00)00092-2




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2018;21