medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number 2

<< Back

TIP Rev Esp Cienc Quim Biol 2018; 21 (2)

Computer-aided drug design: when informatics, chemistry and art meets

Prieto-Martínez FD, Medina-Franco JL
Full text How to cite this article

Language: Spanish
References: 29
Page: 124-134
PDF size: 1012.91 Kb.


Key words:

molecular docking, pharmacophore model, homology model, chemoinformatics, molecular similarity.

ABSTRACT

The pharmaceutical industry is in constant evolution being the driving force, discovery and development of new drugs. In the past, drug discovery was basically based on natural products that were later modified by chemical synthesis. Despite the fact such strategy continues to be valuable, the cost and time of current drug discovery is very high. Currently, the advancement in the development of more powerful and efficient computers has enabled to develop methods and simulations that are optimizing at certain point the drug discovery outllook. In this work we introduce major computational methods and techniques that aid the drug discovery process emphasizing chemoinformatics concepts, their basis and applications.


REFERENCES

  1. Bajusz, D., Rácz, A., & Héberger, K. (2015). Why is Tanimoto Index an Appropriate Choice for Fingerprint-Based Similarity Calculations? J. Cheminformatics, 7, 20. DOI: 10.1186/s13321-015-0069-3

  2. Bender, A., Jenkins, J. L., Scheiber, J., Sukuru, S. C. K., Glick, M., & Davies, J. W. (2009). How Similar are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space. J. Chem. Inf. Model., 49, 108–119. DOI: 10.1021/ci800249s

  3. Brown, C. D., & Davis, H. T. (2006). Receiver Operating Characteristics Curves and Related Decision Measures: A Tutorial. Chemometr. Intell. Lab., 80, 24–38. DOI: 10.1016/j.chemolab.2005.05.004

  4. Clayton, T., Chen, J. L., Ernst, M., Richter, L., Cromer, B. A., Morton, C. J. & Cook, J. M. (2007). An Updated Unified Pharmacophore Model of the Benzodiazepine Binding Site on Gamma-Aminobutyric Acid(A) Receptors: Correlation with Comparative Models. Curr. Med. Chem., 14, 2755–2775. DOI: 10.2174/092986707782360097

  5. De Cesco, S., Kurian, J., Dufresne, C., Mittermaier, A., & Moitessier, N. (2017). Covalent Inhibitors Design and Discovery. Eur. J. Med. Chm., 138, 96–114. DOI: 10.1016/j.ejmech.2017.06.019

  6. Duan, X., Zhang, M., Zhang, X., Wang, F., & Lei, M. (2015). Molecular Modeling and Docking Study on Dopamine D2-Like and Serotonin 5-HT2A Receptors. J. Mol. Graph. Model., 57, 143–155. DOI: 10.1016/j.jmgm.2015.01.014

  7. Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20, 13384-13421. DOI: 10.3390/ molecules200713384

  8. Ferri, E., Petosa, C., & McKenna, C. E. (2016). Bromodomains: Structure, Function and Pharmacology of Inhibition. Biochem. Pharmacol. 106, 1-18. DOI: 10.1016/j.bcp.2015.12.005

  9. Hillisch, A., Pineda, L. F., & Hilgenfeld, R. (2004). Utility of Homology Models in the Drug Discovery Process. Drug Discov Today. 9, 659-669. DOI: 10.1016/S1359-6446(04)03196-4

  10. Hu, Y., & Bajorath, J. (2010). Molecular Scaffolds with High Propensity to form Multi-Target Activity Cliffs. J. Chem. Inf. Model., 50, 500–510. DOI: 10.1021/ci100059q

  11. Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications. Nat. Rev. Drug Discov., 3, 935–949. DOI: 10.1038/nrd1549

  12. Koes, D. R., & Camacho, C. J. (2011). Pharmer: Efficient and Exact Pharmacophore Search. J. Chem. Inf. Model., 51, 1307–1314. DOI: 10.1021/ci200097m

  13. Kumalo, H. M., Bhakat, S., & Soliman, M. E. S. (2015). Theory and Applications of Covalent Docking in Drug Discovery: Merits and Pitfalls. Molecules, 20, 1984–2000. DOI: 10.3390/ molecules20021984

  14. Leffler, A. E., Kuryatov, A., Zebroski, H. A., Powell, S. R., Filipenko, P., Hussein, A. K. & Holford, M. (2017). Discovery of Peptide Ligands Through Docking and Virtual Screening at Nicotinic Acetylcholine Receptor Homology Models. P. Natl. Acad. Sci. USA, 114, E8100–E8109. DOI: 10.1073/pnas.1703952114

  15. Maggiora, G. M., Vogt, M., Stumpfe, D., & Bajorath, J. J. (2013). Molecular Similarity in Medicinal Chemistry. J. Med. Chem., 57, 3186–3204. DOI: 10.1021/jm401411z

  16. Medina-Franco, J. L. (2013). Activity Cliffs: Facts or Artifacts? Chem. Biol. Drug Des., 81, 553–556. DOI: 10.1111/cbdd.12115

  17. Méndez-Lucio, O., Naveja, J. J., Vite-Caritino, H., Prieto-Martínez, F. D., & Medina-Franco, J. L. (2016). Review. One Drug for Multiple Targets: A Computational Perspective. J. Mex. Chem. Soc, 60, 168–181.

  18. Mestres, J. (2005). Representativity of Target Families in the Protein Data Bank: Impact for Family-Directed Structure-Based Drug Discovery. Drug Discovery Today, 10, 1629–1637. DOI: 10.1016/ S1359-6446(05)03593-2

  19. Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for Molecular Docking: A Review. Biophys. Rev. 9, 91-102. DOI: 10.1007/s12551-016-0247-1

  20. Pérez-Villanueva, J., Romo-Mancillas, A., Hernández-Campos, A., Yépez-Mulia, L., Hernández-Luis, F., & Castillo, R. (2011). Antiprotozoal Activity of Proton-pump Inhibitors. Bioorg. Med. Chem. Lett., 21, 7351–7354. DOI: 10.1016/j.bmcl.2011.10.028

  21. Ponder, J. W., & Case, D. A. (2003). Force Fields for Protein Simulations. Adv. Protein Chem., 66, 27–85. DOI: 10.1016/ S0065-3233(03)66002-X

  22. Prieto-Martínez, F. D., Fernández-de Gortari, E., Méndez-Lucio, O., & Medina-Franco, J. L. (2016). A Chemical Space Odyssey of Inhibitors of Histone Deacetylases and Bromodomains. RSC Adv., 6, 56225–56239. DOI: 10.1039/C6RA07224K

  23. Saldívar-González, F., Prieto-Martínez, F. D., & Medina-Franco, J. L. (2017). Descubrimiento y Desarrollo de Fármacos: Un Enfoque Computacional. Educación Química, 28, 51–58. DOI: 10.1016/j. eq.2016.06.002

  24. Santos, R., Ursu, O., Gaulton, A., Bento, A. P., Donadi, R. S., Bologa, C. G. & Overington, J. P. (2016). A Comprehensive Map of Molecular Drug Targets. Nature Reviews Drug Discovery, 16, 19–34. DOI: 10.1038/nrd.2016.230

  25. Spyrakis, F., & Cavasotto, C. N. (2015). Open Challenges in Structure- Based Virtual Screening: Receptor Modeling, Target Flexibility Consideration and Active Site Water Molecules Description. Arch. Biochem. Biophys., 583, 105-109. DOI: 10.1016/j. abb.2015.08.002

  26. Verdonk, M. L., Taylor, R. D., Chessari, G., & Murray, C. W. (2007). Illustration of Current Challenges in Molecular Docking. In Structure-Based Drug Discovery (pp. 201–221). Dordrecht: Springer Netherlands. DOI: 10.1007/1-4020-4407-0_8

  27. Virshup, A. M., Contreras-García, J., Wipf, P., Yang, W., & Beratan, D. N. (2013). Stochastic Voyages into Uncharted Chemical Space Produce a Representative Library of All Possible Drug-Like Compounds. J. Am. Chem. Soc. 135, 7296–7303. DOI: 10.1021/ ja401184g

  28. Wallisch, P. (2014). Principal Components Analysis. MATLAB for Neuroscientists, 305–315. DOI: 10.1016/B978-0-12-383836- 0.00017-5

  29. Warren, G. L., Do, T. D., Kelley, B. P., Nicholls, A., & Warren, S. D. (2012). Essential Considerations for Using Protein-Ligand Structures in Drug Discovery. Drug Discovery Today, 17, 1270–1281. DOI: 10.1016/j.drudis.2012.06.011




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2018;21