medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number S2

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2018; 21 (S2)

Decontamination of arsenic, cadmium and lead in groundwater by biosorption with Saccharomyces cerevisiae

Moreno-Rivas SC, Ramos-Clamont Montfort G
Full text How to cite this article

Language: Spanish
References: 110
Page: 51-68
PDF size: 1099.00 Kb.


Key words:

decontamination, heavy metals, biosorption, biomass, yeast.

ABSTRACT

Heavy metals pollution in water represents a potential public health problem due to its toxicity. Traditional methods of decontamination are mainly focused on the treatment of industrial effluents with high concentrations of heavy metals. In addition, these methods have some disadvantages in their application, such as high costs, large operating spaces and sometimes, employment or generation of other toxic substances. Heavy metals with higher toxicity in water are arsenic, cadmium and lead. Chronic exposure to these heavy metals may damage various organs and promote the development of cancer in humans. The elimination of these heavy metals in drinking water, with lower concentrations that still represent a health risk, can be carried out by the biosorption phenomenon. Biosorbent materials are diverse and economical, ranging from biopolymers to microbial biomass. In this respect, some strains of yeast have great capacity for heavy metals removal in aqueous solutions, especially those of the genus Saccharomyces, particularly Saccharomyces cerevisiae. Biosorption by yeasts is a promising alternative for removing low concentrations of As3+, As5+, Cd2+ and Pb2+ in drinking water. However, it is necessary to continue studying the conditions for its large-scale application, as well as other possibilities that allow its optimization.


REFERENCES

  1. Achanzar, W. E., Diwan, B. A., Liu, J., Quader, S. T., Webber, M. M., & Waalkes, M. P. (2001). Cadmium-induced Malignant Transformation of Human Prostate Epithelial Cells. Cancer Research, 61(2), 455-458.

  2. Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(12), 2243-2257. http://doi.org/10.1016/j. biortech.2005.12.006

  3. Akar, S. T., Arslan, S., Alp, T., Arslan, D., & Akar, T. (2012). Biosorption potential of the waste biomaterial obtained from Cucumis melo for the removal of Pb2+ ions from aqueous media: equilibrium, kinetic, thermodynamic and mechanism analysis. Chemical Engineering Journal, 185-186, 82-90. http://doi. org/10.1016/j.cej.2012.01.032

  4. Amirnia, S., Ray, M. B., & Margaritis, A. (2015). Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor-biosorption system. Chemical Engineering Journal, 264, 863-872. http://doi.org/10.1016/j.cej.2014.12.016

  5. Arıca, M. Y., Kacar, Y., & Genç, Ö. (2001). Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresource technology, 80(2), 121-129.

  6. Arief, V. O., Trilestari, K., Sunarso, J., Indraswati, N., & Ismadji, S. (2008). Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean, 36(12), 937-962. http:// doi.org/10.1002/clen.200800167

  7. Armah, F. A., Quansah, R., & Luginaah, I. (2014). A systematic review of heavy metals of anthropogenic origin in environmental media and biota in the context of gold mining in Ghana. International Scholarly Research Notices, 252148. http://doi. org/10.1155/2014/252148

  8. Arreguín Cortés, F. I., Chávez Guillén, R., Soto Navarro, P. R., & Smedley, P. L. (2010). Una revisión de la presencia de arsénico en el agua subterránea en México. Revista Tláloc AMH, 45, 1-11.

  9. Bandyopadhyay, D., Ghosh, D., Chattopadhyay, A., Firdaus, S. B., Ghosh, A. K., Paul, S., Bhowmik, D., Mishra, S., & Dalui, K. (2014). Lead induced oxidative stress: a health issue of global concern. Journal of Pharmacy Research, 8(9), 1198-1207.

  10. Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361- 377. http://doi.org/10.1016/j.arabjc.2010.07.019

  11. Çabuk, A., Akar, T., Tunali, S. & Gedikli, S. (2007. Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: Equilibrium and mechanism analysis. Chemical Engineering Journal, 131(1), 293-300. DOI: https://doi.org/10.1016/j.cej.2006.12.011

  12. Cañizares-Villanueva, R. O. (2000). Biosorción de metales pesados mediante el uso de biomasa microbiana. Revista Latinoamericana de Microbiología, 42, 131-143.

  13. Central Pollution Control Board, C. P. C. B. (2007). Cadmium an environment toxicant. Recuperado de http://cpcb.nic. in/upload/Newsletters/Newsletters_61_CADMIUM-An EnvironmentToxicant-March-2007.pdf

  14. Chang, J. S., Law, R., & Chang, C. C. (1997). Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water research, 31(7), 1651-1658.

  15. Chassary, P., Vincent, T., Macaskie, L. E., & Guibal, E. (2005). Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy, 76, 131-147. http:// doi.org/10.1016/j.hydromet.2004.10.004

  16. Chowdhury, S., Mazumder, M. A. J., Al-Attas, O., & Husain, T. (2016). Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Science of The Total Environment, 569-570, 476-488. doi:https://doi.org/10.1016/j. scitotenv.2016.06.166

  17. Council of the European Union. (1998). Council Directive 98/83/Ec. Official Journal of the European Communities, L 330, 32-54.

  18. Deng, S., Zhang, G., Chen, S., Xue, Y., Du, Z., & Wang, P. (2016). Rapid and effective preparation of a HPEI modified biosorbent based on cellulose fiber with a microwave irradiation method for enhaced arsenic removal in water. Journal of Materials Chemistry A, 4(41), 15851-15860.

  19. Dhankhar, R., & Hooda, A. (2011). Fungal biosorption - an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467-491. http://doi.org/10.10 80/09593330.2011.572922

  20. Dubey, S. P., Gopal, K., & Bersillon, J. L. (2009). Utility of adsorbents in the purification of drinking water: a review of characterization, efficiency and safety evaluation of various adsorbents. Journal of Environmental Biology, 30(3), 327-332.

  21. Duffus, J. H. (2002). Heavy metals - a meaningless term? (IUPAC Technical Report). Pure Applied Chemistry, 74(5), 793-807.

  22. Esposito, A., Pagnanelli, F., & Vegliò, F. (2002). pH-related equilibria models for biosorption in single metal systems. Chemical Engineering Science, 57, 307-313.

  23. Farhan, S. N., & Khadom, A. A. (2015). Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. International Journal of Industrial Chemistry, 6(2), 119-130. http://doi.org/10.1007/s40090-015-0038-8

  24. FDA. U.S. Food and Drug Administration. (2010). Bottled Water Everywhere: Keeping it Safe. FDA Consumer Health Information, (June), 1-2.

  25. FDA. U.S. Food and Drug Administration. (2015). Beverages. Food for Human Consumption. Recuperado de https://www.accessdata. fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=165.110

  26. FPTCDW (Federal-Provincial-Territorial Committee on Drinking Water) 2006. Guidelines for Canadian Drinking Water Quality. Guideline Technical Document: Arsenic. Health Canada: Ottawa.

  27. Ferreira, V., Koricheva, J., Duarte, S., Niyogi, D. K., & Guérold, F. (2016). Effects of anthropogenic heavy metal contamination on litter decomposition in streams - a meta-analysis. Environmental Pollution, 210, 261–270. http://doi.org/10.1111/brv.12125

  28. Fiol, N., Villaescusa, I., Martínez, M., Miralles, N., Poch, J., & Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Separation and Purification Technology, 50, 132-140. http://doi.org/10.1016/j. seppur.2005.11.016

  29. Fomina, M., & Gadd, G. M. (2014). Biosorption: current perspectives on concept, definition and application. Bioresource Technology, 160, 3-14. http://doi.org/10.1016/j.biortech.2013.12.102

  30. Fosso-Kankeu, E., & Mulaba-Bafubiandi, A. (2014). Review of challenges in the escalation of metal-biosorbing processes for wastewater treatment: Applied and commercialized technologies. African Journal of Biotechnology, 13(17), 1756-1771. http://doi. org/10.5897/AJB2013.13311

  31. Gadd, G. M. (2008). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), 13-28. http://doi.org/10.1002/jctb.1999

  32. García-Esquinas, E., Pollan, M., Umans, J. G., Francesconi, K. A., Goessler, W., Guallar, E., Howard, B., Farley, J., Best, L. G., & Navas-Acien, A. (2013). Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiology Biomarkers and Prevention, 22(11), 1944-1953. http://doi.org/10.1158/1055-9965.EPI-13-0234-T

  33. Göksungur, Y., Üren, S., & Güvenç, U. (2005). Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresource Technology, 96(1), 103-109. http://doi.org/10.1016/j. biortech.2003.04.002

  34. Gupta, V. K., Nayak, A., & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environmental Engineering Research, 20(1), 1-18.

  35. Hammaini, A., González, F., Ballester, A., Blázquez, M. L., & Muñoz, J. A. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. Journal of Environmental Management, 84(4), 419-426. DOI:https://doi.org/10.1016/j. jenvman.2006.06.015

  36. Haque, M. N., Morrison, G. M., Perrusquia, G., Gutierrez, M., Aguilera, A. F., Cano-Aguilera, I., & Gardea-Torresdey, J. L. (2007). Characteristics of arsenic adsorption to sorghum biomass. Journal of hazardous materials, 145(1-2), 30-35.

  37. Hartwig, A. (2013). Cadmium and cancer. Met Ions Life Sci, 11, 491- 507. DOI:10.1007/978-94-007-5179-8_15

  38. Hernández Mata, K. M., Monge Amaya, O., Certucha Barragán, M. T., Almendariz Tapia, F. J., & Acedo Félix, E. (2013). Metallic biosorption using yeasts in continuous systems. International Journal of Photoenergy, 4. http://dx.doi.org/10.1155/2013/578729

  39. Hlihor, R. M., Bulgariu, L., Sobariu, D. L., Diaconu, M., Tavares, T., & Gavrilescu, M. (2014). Recent advances in biosorption of heavy metals: support tools for biosorption equilibrium, kinetics and mechanism. Revue Roumaine de Chimie, 59(6-7), 527-538.

  40. Holan, Z. N., & Volesky, B. N. (1995). Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents. Applied biochemistry and biotechnology, 53(2), 133-146.

  41. IARC. (2016). Agents classified by the IARC monographs. Volumes 1-115. Lyon, France. Recuperado de http://monographs.iarc.fr/ ENG/Classification/latest_classif.php

  42. INECC. (2009). Metales Pesados. Recuperado de http://www.inecc. gob.mx/sqre-temas/763-aqre-metales

  43. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60-72. DOI:10.2478/intox-2014-0009

  44. Jianlong, W. (2002). Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry, 37(8), 847-850. http://doi.org/10.1016/S0032-9592(01)00284-9

  45. Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes, C. J., & Valko, M. (2011). Arsenic: toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31(2), 95-107. DOI:10.1002/jat.1649 45. Kogej, A., & Pavko, A. (2001). Comparison of Rhizopus nigricans in a pelleted growth form with some other types of waste microbial biomass as biosorbents for metal ions. World Journal of Microbiology and Biotechnology, 17(7), 677-685.

  46. Kordialik-Bogacka, E. (2011). Surface properties of yeast cells during heavy metal biosorption. Central European Journal of Chemistry, 9(2), 348-351. http://doi.org/10.2478/s11532-011-0008-8

  47. Kordialik-Bogacka, E. (2014). Saccharomyces pastorianus immobilized on brewer’s spent grain in continuous system for lead ion biosorption. International Biodeterioration and Biodegradation, 96, 191-197. http://doi.org/10.1016/j.ibiod.2014.09.018

  48. Kordialik-Bogacka, E., & Diowksz, A. (2014). Metal uptake capacity of modified Saccharomyces pastorianus biomass from different types of solution. Environmental Science and Pollution Research, 21(3), 2223-2229. http://doi.org/10.1007/s11356-013-2144-5

  49. Kulakovskaya, T., Ryazanova, L., Zvonarev, A., Khokhlova, G., Ostroumov, V., & Vainshtein, M. (2018). The biosorption of cadmium and cobalt and iron ions by yeast Cryptococcus humicola at nitrogen starvation. Folia Microbiologica. 63(4), 507-510. DOI:10.1007/s12223-018-0583-6

  50. Kuroda, K., & Ueda, M. (2010). Engineering of microorganisms towards recovery of rare metal ions. Applied Microbiology and Biotechnology, 87(1), 53-60. http://doi.org/10.1007/s00253- 010-2581-8

  51. Kwok, K. C. M., Koong, L. F., Al Ansari, T., & McKay, G. (2018). Adsorption/desorption of arsenite and arsenate on chitosan and nanochitosan. Environmental Science and Pollution Research.25(15), 14734–14742. DOI:10.1007/s11356-018- 1501-9

  52. Lata, S., Singh, P. K., & Samadder, S. R. (2015). Regeneration of adsorbents and recovery of heavy metals: a review. International Journal of Environmental Science and Technology, 12(4), 1461- 1478. DOI:10.1007/s13762-014-0714-9

  53. Levenspiel, O. (1984). Flow in fluidized beds. En Engineering Flow and Heat Exchange. The Plenum Chemical Engineering Series. (pp. 135-147). Boston, MA, USA: Springer. https://doi. org/10.1007/978-1-4615-6907-7_7

  54. Lin, J., & Harichund, C. (2011). Industrial effluent treatments using heavy-metal removing bacterial bioflocculants. Water SA, 37(2), 265-270.

  55. López-Carrillo, L., Hernández-Ramírez, R. U., Gandolfi, A. J., Ornelas- Aguirre, J. M., Torres-Sánchez, L., & Cebrian, M. E. (2014). Arsenic methylation capacity is associated with breast cancer in Northern Mexico. Toxicology and Applied Pharmacology, 280(1), 53-59. http://doi.org/10.1016/j.taap.2014.07.013

  56. Machado, M. D., Janssens, S., Soares, H. M. V. M., & Soares, E. V. (2009). Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. Journal of Applied Microbiology, 106(6), 1792-1804. http://doi. org/10.1111/j.1365-2672.2009.04170.x

  57. Machado, M. D., Soares, E. V., & Soares, H. M. V. M. (2010). Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. Journal of Hazardous Materials, 180(1-3), 347-353. http://doi. org/10.1016/j.jhazmat.2010.04.037

  58. Malgieri, G., Palmieri, M., Esposito, S., Maione, V., Russo, L., Baglivo, I., de Paola, I., Milardi, D., Diana, D., Zaccaro, L., Pedone, P. V., Fattorusso, R., & Isernia, C. (2014). Zinc to cadmium replacement in the prokaryotic zinc-finger domain. Metallomics: Integrated Biometal Science, 6(1), 96-104. http://doi.org/10.1039/ c3mt00208j

  59. Marques, P., Pinheiro, H. M., & Rosa, M. F. (2007). Cd(II) removal from aqueous solution by immobilised waste brewery yeast in fixed-bed and airlift reactors. Desalination, 214, 343-351. http:// doi.org/10.1016/j.desal.2006.11.012

  60. Mata, Y. N., Blázquez, M. L., Ballester, A., González, F., & Muñoz, J. A. (2010). Studies on sorption, desorption, regeneration and reuse of sugar-beet pectin gels for heavy metal removal. Journal of Hazardous Materials, 178(1), 243-248. doi:https:// doi.org/10.1016/j.jhazmat.2010.01.069

  61. Monachese, M. A. (2012). Sequesteration of lead, cadmium and arsenic by Lactobacillus species and detoxication potential. The University of Western Ontario.

  62. Moreno-Rivas, S., Armenta-Corral, R., Frasquillo-Félix, M., Lagarda- Díaz, I., Vázquez-Moreno, L., & Ramos-Clamont Montfort, G. (2016). Biosorción de cadmio en solución acuosa utilizando levadura de panadería (Saccharomyces cerevisiae). Revista Mexicana de Ingeniería Química, 15(3), 843-857.

  63. Muter, O., Lubinya, I., Millers, D., Grigorjeva, L., Ventinya, E., & Rapoport, A. (2002). Cr(VI) sorption by intact and dehydrated Candida utilis cells in the presence of other metals. Process Biochemistry, 38, 123-131.

  64. Nagy, B., Tonk, S., Cerasella, I., Măicăneanu, A., & Majdik, C. (2013). Biosorption of cadmium ions by unmodified, microwave and ultrasound modified brewery and pure strain yeast biomass. American Journal of Analytical Chemistry, 4, 63-71.

  65. Naja, G. M., Murphy, V., Volesky, B. (2010) Biosorption, metals. En M. C. Flickinger. (Ed.), Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology. (pp. 1-29). Hoboken, NJ, USA: Wiley. https://doi. org/10.1002/9780470054581.eib166

  66. Niazi, N. K., Murtaza, B., Bibi, I., Shahid, M., White, J. C., Nawaz, M. F., Bashir, S., Shakoor, M. B., Choppala, G., Murtaza, G., & Wang, H. (2016). Removal and recovery of metals by biosorbents and biochars derived from biowastes. En M. N. V. Prasad & K. Shih (Eds.), Environmental Materials and Waste: Resource Recovery and Pollution Prevention. (pp. 149-177). Linn, MO, USA: Elsevier. https://doi.org/10.1016/B978-0-12-803837-6.00007-X

  67. Özer, A., & Özer, D. (2003). Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. Journal of Hazardous Materials, 100(1-3), 219-229. http://doi.org/10.1016/S0304-3894(03)00109-2

  68. Pandey, P. K., Choubey, S., Verma, Y., Pandey, M., & Chandrashekhar, K. (2009). Biosorptive removal of arsenic from drinking water. Bioresource technology, 100(2), 634-637.

  69. Park, D., Yun, Y. S., & Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15(1), 86-102.

  70. Pearson, R. G. (1963). Hard and soft acids bases. Journal of the American Chemical Society, 85(22), 3533-3539.

  71. Pokethitiyook, P., & Poolpak, T. (2016). Biosorption of heavy metal from aqueous solutions. In A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation (pp. 113- 141). Switzerland: Springer International Publishing. http://doi. org/10.1007/978-3-319-40148-5

  72. Purkayastha, D., Mishra, U., & Biswas, S. (2014). A comprehensive review on Cd(II) removal from aqueous solution. Journal of Water Process Engineering, 2, 105-128. http://doi.org/10.1016/j. jwpe.2014.05.009

  73. Rajendran, P., Muthukrishnan, J., & Gunasekaran, P. (2003). Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41(9), 935-944.

  74. Rajesh Kumar, S., Jayavignesh, V., Selvakumar, R., Swaminathan, K., & Ponpandian, N. (2016). Facile synthesis of yeast crosslinked Fe3O4 nanoadsorbents for efficient removal of aquatic environment contaminated with As(V). J Colloid Interface Sci, 484, 183-195. DOI:10.1016/j.jcis.2016.08.081

  75. Rao, K., Mohapatra, M., Anand, S., & Venkateswarlu, P. (2010). Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology, 2(7), 81-103. http://doi.org/10.4314/ijest.v2i7.63747

  76. Rao, L. N., & Prabhakar, G. (2011). Removal of heavy metals by biosorption - an overall review. Journal of Engineering Research and Studies, II(IV), 17-22.

  77. Romera, E., Gonzalez, F., Ballester, A., Blazquez, M. L., & Munoz, J. A. (2006). Biosorption with algae: a statistical review. Critical reviews in biotechnology, 26(4), 223-235.

  78. Rosca, M., Hlihor, R. M., Cozma, P., Diana, E., Simion, I. M., & Gavrilescu, M. (2015). Potential of biosorption and bioaccumulation processes for heavy metals removal in bioreactors. The 5th IEEE International Conference on E-Health and Bioengineering - EHB 2015 (pp. 1-4). IEEE.

  79. Roy, D., Gaur, P., Verma, N., Pathireddy, M., & Singh, K. P. (2013). Bioremediation of arsenic (III) from water using baker yeast Saccharomyces cerevisiae. International Journal of Environmental Bioremediation & Biodegradation, 1(1), 14-19. http://doi. org/10.12691/ijebb-1-1-3

  80. Safarik, I., Maderova, Z., Pospiskova, K., Baldikova, E., Horska, K., & Safarikova, M. (2015). Magnetically responsive yeast cells: methods of preparation and applications. Yeast, 32(1), 227-237.

  81. Salehizadeh, H., & Shojaosadati, S. A. (2003). Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Research, 37(17), 4231-4235.

  82. Say, R., Yılmaz, N., & Denizli, A. (2003). Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Separation Science and Technology, 38(9), 2039-2053.

  83. Schwerdtle, T., Ebert, F., Thuy, C., Richter, C., Mullenders, L. H. F., & Hartwig, A. (2010). Genotoxicity of Soluble and Particulate Cadmium Compounds: Impact on Oxidative DNA Damage and Nucleotide Excision Repair. Chemical Research in Toxicology, 23(2), 432-442. DOI:10.1021/tx900444w

  84. Selvakumar, R., Jothi, N. A., Jayavignesh, V., Karthikaiselvi, K., Antony, G. I., Sharmila, P. R., Kavitha, S., & Swaminathan, K. (2011). As(V) removal using carbonized yeast cells containing silver nanoparticles. Water Research, 45(2), 583-592. http://doi. org/10.1016/j.watres.2010.09.034

  85. Shankar, S., Shanker, U., & Shikha. (2014). Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. The Scientific World Journal, 2014, 1-18. http://doi.org/10.1155/2014/304524

  86. Shen, S., Li, X. F., Cullen, W. R., Weinfeld, M., & Le, X. C. (2013). Arsenic binding to proteins. Chemical Reviews, 113(10), 7769- 7792. http://doi.org/10.1021/cr300015c

  87. Singh, S., Lee, W., DaSilva, N. A., Mulchandani, A., & Chen, W. (2008). Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase. Biotechnology and Bioengineering, 99(2), 333-340.

  88. Soares, E. V., & Soares, H. M. V. M. (2012). Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: A review. Environmental Science and Pollution Research, 19(4), 1066-1083. http://doi.org/10.1007/s11356-011-0671-5

  89. Spence, C. L., & Bailon, P. (2000). Fluidized-Bed Receptor-Affinity Chromatography. En P. Bailon, G. K. Ehrlich, W. J. Fung, W. Berthold (Eds.), Affinity Chromatography. Methods in Molecular Biology, Vol. 147 (pp. 25-39). Totowa, NJ, USA: Humana Press. https://doi.org/10.1007/978-1-60327-261-2_3

  90. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metals Toxicity and the Environment. EXS, 101, 133-164. doi:10.1007/978-3-7643-8340-4_6

  91. USEPA. (2016). Table of Regulated Drinking Water Contaminants. Recuperado de https://www.epa.gov/your-drinking-water/tableregulated- drinking-water-contaminants

  92. Vasudevan, P., Padmavathy, V., & Dhingra, S. C. (2002). Biosorption of monovalent and divalent ions on baker’s yeast. Bioresource Technology, 82(3), 285-289. http://doi.org/10.1016/S0960- 8524(01)00181-X

  93. Vasudevan, P., Padmavathy, V., & Dhingra, S. C. (2003). Kinetics of biosorption of cadmium on baker’s yeast. Bioresource Technology, 89(3), 281-287. http://doi.org/10.1016/S0960-8524(03)00067-1

  94. Veglio, F., & Beolchini, F. (1997). Removal of metals by biosorption : a review. Hydrometallurgy, 44, 301-316.

  95. Vijayaraghavan, K., & Balasubramanian, R. (2015). Is biosorption suitable for decontamination of metal-bearing wastewaters ? a critical review on the state-of-the-art of biosorption processes and future directions. Journal of Environmental Management, 160, 283-296. http://doi.org/10.1016/j.jenvman.2015.06.030

  96. Vinopal, S., Ruml, T., & Kotrba, P. (2007). Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. International Biodeterioration and Biodegradation, 60(2), 96- 102. http://doi.org/10.1016/j.ibiod.2006.12.007

  97. Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances, 24(5), 427-451. http://doi.org/10.1016/j.biotechadv.2006.03.001

  98. Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195-226. http:// doi.org/10.1016/j.biotechadv.2008.11.002

  99. Wang, S., & Zhao, X. (2009). On the potential of biological treatment for arsenic contaminated soils and groundwater. Journal of environmental Management, 90(8), 2367-2376.

  100. WHO. (2011). Cadmium in drinking water. Background Document for Preparation of WHO Guidelines for Drinking-water Quality. Geneva, Switzerland. Recuperado de http://www.who.int/ water_sanitation_health/dwq/chemicals/cadmium.pdf

  101. WHO. (2006). Guidelines for drinking-water quality. Recommendations (Vol. 1). Geneva, Switzerland. Recuperado de http://www.who. int/water_sanitation_health/dwq/gdwqvol32ed.pdf

  102. Wu, Y., Wen, Y., Zhou, J., Dai, Q., & Wu, Y. (2012). The characteristics of waste Saccharomyces cerevisiae biosorption of arsenic (III). Environmental Science and Pollution Research, 19(8), 3371-3379.

  103. Wykoff, D. D., & Shea, E. K. O. (2001). Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics, 159(4), 1491-1499.

  104. Wysocki, R., Chéry, C. C., Wawrzycka, D., Van Hulle, M., Cornelis, R., Thevelein, J. M., & Tamás, M. J. (2001). The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Molecular Microbiology, 40(6), 1391-1401.

  105. Yadanaparthi, S. K. R., Graybill, D., & von Wandruszka, R. (2009). Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. Journal of Hazardous Materials, 171(1-3), 1-15. https://doi.org/10.1016/j.jhazmat.2009.05.103

  106. Yin, Y., Wang, J., Yang, X., & Li, W. (2016). Removal of strontium ions by immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres. Nuclear Engineering and Technology. 49(1), 172- 177. http://doi.org/10.1016/j.net.2016.09.002

  107. Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N.R., McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 181, 817-831. https://doi.org/10.1016/j. jenvman.2016.06.059

  108. Zhang, Y., Liu, W., Zhang, L., Wang, M., & Zhao, M. (2011). Application of bifunctional Saccharomyces cerevisiae to remove lead(II) and cadmium(II) in aqueous solution. Applied Surface Science, 257(23), 9809-9816. http://doi.org/10.1016/j. apsusc.2011.06.026

  109. Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, X., Tzannetaki, E. L., & Liakopoulou-Kyriakides, M. (2007). Comparative study of Cd (II) and Cr (VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresource technology, 98(15), 2859-2865.

  110. Zoghi, A., Khosravi-Darani, K., & Sohrabvandi, S. (2014). Surface binding of toxins and heavy metals by probiotics. Mini-Reviews in Medicinal Chemistry, 14(1), 84-98. http://doi.org/10.2174/13 89557513666131211105554




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2018;21