medigraphic.com
SPANISH

Revista Médica de la Universidad Veracruzana

Órgano Oficial del Instituto de Ciencias de la Salud, Hospital Escuela y Facultad de Medicina-Xalapa
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number 2

<< Back Next >>

Rev Med UV 2018; 18 (2)

Pre-processing temperature and time: essential factors for cellular performance from Wharton’s gelatin

Duarte RJM, Muñoz MN, Ávila J, Riveros Á, Franco D, Ávila PLM
Full text How to cite this article

Language: Spanish
References: 23
Page: 7-24
PDF size: 1473.38 Kb.


Key words:

Mesenchymal Stem cells, Umbilical cord, Wharton’s Jelly, Viability, Cellularity, Time, Temperature.

ABSTRACT

A quasi-experimental study was carried out, where 25 umbilical cords (UC) were collected in transport solution of which only nine (9) fulfilled the inclusion criteria. The size of the cords was greater than 30 cm with a diameter of ≥ 1.5 cm; these were cut into 15 fragments of approximately 2 cm and exposed to different temperatures (10 ° C, 22 ° C and 32 ° C) for 6, 12, 24, 48 and 72 hours. It was obtained 600 mgs of Wharton’s gelatin (WJ) from each fragment. Cellularity and viability were analyzed with trypan blue staining. The fragments maintained at 10 ° C presented an average viability of 85.6% ± 6.8 at 6 hours, with a loss of viability at 72 hours of 13.6% (p = 0.001). At 22 ° C the viability average was 84.3% ± 4.2 with a loss of viability at 72 hours of 27.4% (p ‹0.001). At 32°C 83.6% ± 4.6 with a decrease of 60.4% at 72 hours (p ‹0.001). With respect to the number of cells / mg of WJ, at 22 ° C an average of 167 cells / mg ± 36.5 was presented at 6 hours with a cell loss at 72 hours of 112 cells / mg (p = 0.001). ). At 32 ° C 139 cel./mg ± 73.7, with a loss of 98 cel./mg at 72 hours (p = 0.003). The cellularity was not statistically significant at 10 ° C between the different times (p = 0.931). The data found in this study indicate that the ideal temperature for the preservation and transport of UC tissue is 10 ° C, with a maximum conservation time of 24 hours.


REFERENCES

  1. Altanerova, U., Babincova, M., Babinec, P., Benejova, K., Jakubechova, J., Altanerova, V., y Altaner, C. (2017). Human mesenchymal stem cell-derived iron oxide exosomes allow targeted ablation of tumor cells via magnetic hyperthermia. International Journal of Nanomedicine, 12, 7923–7936. https://doi.org/10.2147/IJN. S145096

  2. Arbós, A., Nicolau, F., Quetglas, M., Ramis, J. M., Monjo, M., Muncunill, J., y Gayà, A. (2013). Obtención de células madre mesenquimales a partir de cordones umbilicales procedentes de un programa altruista de donación de sangre de cordón. Inmunología, 32(1), 3–11. https://doi.org/10.1016/j.inmuno.2012.11.002

  3. Ávila-Portillo, L. M., Madero, J. I., López, C., León, M. F., Acosta, L., y Gómez, C. (2006). Fundamentos de criopreservación. Revista Colombiana de Obstetricia y Ginecología, 57(4), 291–300.

  4. Batsali, A. K., Kastrinaki, M. C., Papadaki, H. A., y Pontikoglou, C. (2013). Mesenchymal stem cells derived from Wharton’s Jelly of the umbilical cord: biological properties and emerging clinical applications. Current Stem Cell Research & Therapy, 8(2), 144–155.

  5. Chen, G., Yue, A., Ruan, Z., Yin, Y., Wang, R., Ren, Y., y Zhu, L. (2015). Comparison of biological characteristics of mesenchymal stem cells derived from maternal- origin placenta and Wharton’s jelly. Stem Cell Research & Therapy, 6. https:// doi.org/10.1186/s13287-015-0219-6

  6. Costa, C., y Fernando, D. (2015). Implementación de protocolos de aislamiento y cultivo de células madre mesenquimales de la gelatina de wharton del cordón umbilical como base para estudios de regeneración de tejidos. Recuperado de http:// www.dspace.espol.edu.ec/handle/123456789/29597

  7. Dulugiac, M., Moldovan, L., y Zarnescu, O. (2015). Comparative studies of mesenchymal stem cells derived from different cord tissue compartments – The influence of cryopreservation and growth media. Placenta, 36(10), 1192–1203. https:// doi.org/10.1016/j.placenta.2015.08.011

  8. Fu, Y.-S., Cheng, Y. C., Lin, M.-Y. A., Cheng, H., Chu, P.-M., Chou, S.-C., y Sung, M. S. (2006). Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells (Dayton, Ohio), 24(1), 115–124. https://doi.org/10.1634/ stemcells.2005-0053

  9. Kang, S. K., Shin, I. S., Ko, M. S., Jo, J. Y., y Ra, J. C. (2012). Journey of mesenchymal stem cells for homing: Strategies to enhance efficacy and safety of stem cell therapy. Stem Cells International, (2012), e342968. Recuperado de https://doi. org/10.1155/2012/342968

  10. Kobolak, J., Dinnyes, A., Memic, A., Khademhosseini, A., y Mobasheri, A. (s/f). Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods. Recuperado de https://doi.org/10.1016/j. ymeth.2015.09.016

  11. Muraki, K., Hirose, M., Kotobuki, N., Kato, Y., Machida, H., Takakura, Y., y Ohgushi, H. (2006). Assessment of viability and osteogenic ability of human mesenchymal stem cells after being stored in suspension for clinical transplantation. Tissue Engineering, 12(6), 1711–1719. https://doi.org/10.1089/ten.2006.12.1711

  12. Oliver-Vila, I., Coca, M. I., Grau-Vorster, M., Pujals-Fonts, N., Caminal, M., Casamayor- Genescà, A., y Vives, J. (2016). Evaluation of a cell-banking strategy for the production of clinical grade mesenchymal stromal cells from Wharton’s jelly. Cytotherapy, 18(1), 25–35. https://doi.org/10.1016/j.jcyt.2015.10.001

  13. Pal, R., Hanwate, M., y Totey, S. M. (2008). Effect of holding time, temperature and different parenteral solutions on viability and functionality of adult bone marrow-derived mesenchymal stem cells before transplantation. Journal of Tissue Engineering and Regenerative Medicine, 2(7), 436–444. https://doi. org/10.1002/term.109

  14. Portillo, L. M. Á., Ruiz, D. J. F., García, J. P. A., Arocha, A. G. R., y Mauricio, S. (2015). Comparación de la viabilidad y crecimiento en cultivo de células madre adultas obtenidas de tejido adiposo pre y post congelamiento. Nova, 13(24), 27– 38.

  15. Qiao, C., Xu, W., Zhu, W., Hu, J., Qian, H., Yin, Q., y Chen, Y. (2008). Human mesenchymal stem cells isolated from the umbilical cord. Cell Biology International, 32(1), 8–15. https://doi.org/10.1016/j.cellbi.2007.08.002

  16. Salehinejad, P., Alitheen, N. B., Ali, A. M., Omar, A. R., Mohit, M., Janzamin, E., y Nematollahi-Mahani, S. N. (2012). Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. In Vitro Cellular & Developmental Biology - Animal, 48(2), 75–83. https://doi. org/10.1007/s11626-011-9480-x

  17. 17Seshareddy, K., Troyer, D., & Weiss, M. L. (2008). Method to isolate mesenchymal‐ like cells from Wharton’s jelly of umbilical cord. En B.M. C. Biology, 86, 101–119. Academic Press. Recuperado de http://www.sciencedirect.com/science/ article/pii/S0091679X0800006X

  18. Sharma, R. R., Pollock, K., Hubel, A., & McKenna, D. (2014). Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion, 54(5), 1418–1437. https://doi.org/10.1111/trf.12421

  19. Stanko, P., Kaiserova, K., Altanerova, V., & Altaner, C. (2014). Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 158(3), 373–377. https://doi.org/10.5507/bp.2013.078

  20. Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 35(2). https://doi. org/10.1042/BSR20150025

  21. Umbilical Cord Mesenchymal. (2016, mayo 3). Recuperado de https:// clinicaltrials.gov/ct2/results?term=Umbilical+cord+mesenchymal+&Search=- Search

  22. Wang, S., Qu, X., & Zhao, R. C. (2012). Clinical applications of mesenchymal stem cells. Journal of Hematology & Oncology, 5, 19. https://doi. org/10.1186/1756-8722-5-19

  23. Yan, M., Sun, M., Zhou, Y., Wang, W., He, Z., Tang, D., … Li, H. (2013). Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopamine neurons mediated by the Lmx1a and neurturin in vitro: potential therapeutic application for Parkinson’s disease in a rhesus monkey model. PloS One, 8(5), e64000. Recuperado de https://doi.org/10.1371/journal.pone.0064000




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Med UV. 2018;18