medigraphic.com
SPANISH

Revista Cubana de Tecnología de la Salud

ISSN 2218-6719 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number 3

<< Back

Rev Cub de Tec de la Sal 2018; 9 (3)

Transfusion reactions associated with antigranulocytic antibodies: physiopathogenic and molecular aspects of transfusion acute pulmonary damage

Soler NG, Romero DY, Bencomo HA
Full text How to cite this article

Language: Spanish
References: 50
Page: 66-81
PDF size: 262.13 Kb.


Key words:

leukocyte antigenic systems, transfusion reaction, acute pulmonary damage.

ABSTRACT

Introduction: HLA and HNA leukocyte antigenic systems are associated with transfusion reactions. Antibodies directed against both systems cause febrile nonhemolytic transfusion reaction and acute pulmonary damage associated with transfusion. The investigation of these antibodies is the strategy to evaluate the patients and donors involved in these reactions. Objective: to deepen the physiopathogenic, mechanistic characteristics, diagnosis and measures of prevention of acute pulmonary damage associated with transfusion. Methods: a review of the literature was conducted, through the PubMed website and the Google academic search engine, of articles published in the last 10 years on the acute pulmonary damage associated with transfusion. An analysis and summary of the reviewed bibliography was made. Development: in acute lung damage associated with antibody-mediated transfusion, it is required that those present in the donor bind to the target antigen present in the receptor, which leads to complement activation and causes pulmonary sequestration and activation of neutrophils. In some cases the antibodies are not detected in the donor or in the recipient. The most commonly used assays for the detection of anti-HNA antibodies are the agglutination, immunofluorescence or flow cytometry techniques and the immobilization technique of granulocytic antigens with monoclonal antibodies. Final considerations: preventive measures must be taken to avoid the transfusion of blood products containing antileukocyte antibodies, while the identification of risk factors would improve the risk-benefit estimate in this therapeutic procedure.


REFERENCES

  1. Warner MA, Welsby IJ, Norris PJ, Silliman CC, Armour S, Wittwer ED, et al. Point-of-care washing of allogeneic red blood cells for the prevention of transfusion-related respiratory complications (WAR-PRC): a protocol for a multicenter randomised clinical trial in patients undergoing cardiac surgery. BMJ Open. 2017; 7: e016398. doi:10.1136/bmjopen-2017-016398

  2. Peters AL, Van Stein D, Vlaar A. Antibody-mediated transfusion-related acute lung injury; from discovery to prevention. British Journal of Haematology. 2015; 170: 597-614. doi: 10.1111/bjh.13459

  3. Rebetz J, Semple JW, Kapur R. The Pathogenic Involvement of Neutrophils in Acute Respiratory Distress Syndrome and Transfusion-Related Acute Lung Injury. Transfus Med Hemother. 2018. doi: 10.1159/000492950

  4. Savage WJ. Transfusion Reactions. Hematol Oncol Clin N Am. 2016; 30: 619-34. doi: org/10.1016/j.hoc.2016.01.012

  5. Shander A, Bracey AWJr, Goodnough LT, Gross I, Hassan NE, Ozawa S, et al. Patient blood management as standard of care. Anesth Analg. 2016; 123:1051-3.doi:10.1213/ANE.0000000000001496

  6. Hamzeh-Cognasse H, Damien P, Nguyen KA, Arthaud CA, Eyraud MA, Chavarin P, et al. Immune-reactive soluble OX40 ligand, soluble CD40 ligand, and interleukin-27 are simultaneously oversecreted in platelet components associated with acute transfusion reactions. Transfusion. 2014; 54: 613-25. doi: 10.1111/trf.12378

  7. Rajesh K, Harsh S, Amarjit K. Effects of Prestorage Leukoreduction on the Rate of Febrile Nonhemolytic Transfusion Reactions to Red Blood Cells in a Tertiary Care Hospital. Ann Med Healt Scien Res. 2015; 5(3):185-8. doi:10.4103/2141-9248.157498.

  8. Bennett-Guerrero E, Kirby BS, Zhu H, Herman AE, Bandarenko N, McMahon TJ. Randomized stud y of washing 40- to 42-day-stored red blood cells. Transfusion. 2014; 54, 2544-52.

  9. Kleinman S, Stassinopoulos A. Risks associated with red blood cell transfusions: potential benefits from application of pathogen inactivation. Transfusion. 2015; 55(12):2983-3000. doi: 10.1111/trf.13259

  10. Clifford L, Jia Q, Subramanian A, Yadav H, Wilson GA, Murphy SP, et al. Characterizing the epidemiology of postoperative transfusion-related acute lung injury. Anesthesiology. 2015; 122(1):12-20. doi: 10.1097/ALN.0000000000000514

  11. Alvarez P, Carrasco R, Romero-Dapueto C, Castillo RL. Transfusion-related acute lung injured (TRALI): current concepts. Open Respir Med J. 2015; 26; 9:92-6. doi: 10.2174/1874306401509010092

  12. Popovsky MA, Abel MD, Moore SB. Transfusion-related acute lung injury associated with passive transfer of antileukocyte antibodies. Am Rev Respir Dis. 1983; 128(1):185-9. doi:10.1164/arrd.1983.128.1.185

  13. Popovsky MA, Moore SB: Diagnostic and pathogenetic considerations in transfusion-related acute lung injury. Transfusion. 1985; 25(6):573-7.

  14. Semple JW, McVey MJ, Kim M. Targeting transfusion-related acute lung injury: the journey from basic science to novel therapies. Crit Care Med. 2018; 46:e452-e458.

  15. Peters AL, Vlaar AP. Redefining transfusion-related acute lung injury: don't throw the baby out with the bathwater. Transfusion. 2016; 56(9): 2384-8. doi: 10.1111/trf.13643

  16. Añón JM, García de Lorenzo A, Quintana M, González E, Bruscas MJ. Lesión pulmonar aguda producida por transfusión. Med Intensiva. 2010; 34(2): 139-49. doi:10.1016/j.medin.2009.03.007

  17. Kim J, Na S. Transfusion-related acute lung injury; clinical perspectives. Korean J Anesthesiol. 2015; 68(2): 101-5. doi:10.4097/kjae.2015.68.2.101

  18. Popovsky MA. Transfusion-related acute lung injury: three decades of progress but miles to go before we sleep. Transfusion. 2015; 55(5):930-4. doi: 10.1111/trf.13064

  19. Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 9th ed. Philadelphia: Elsevier; 2017.

  20. Wang SS, Carrington M, Berndt SI, Slager SL, Bracci PM, Voutsinas J, et al. HLA Class I and II Diversity Contributes to the Etiologic Heterogeneity of Non-Hodgkin Lymphoma Subtypes. Cancer Res. 2018; 78(14); 4086-96. doi: 10.1158/0008-5472.CAN-17-2900

  21. Raj P, Rai E, Song R, Khan S, Wakeland BE. Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. eLife. 2016; 5: e1208. doi: 10.7554/eLife.12089

  22. Human neutrophil antigens: a nomenclature update based on new alleles and new antigens. Flesch BK & for the International Society of Blood Transfusion (ISBT) HNA nomenclature subcommittee. ISBT Science Series. 2015; 10 (1S): 243-9

  23. Flesch BK, Reil A. Molecular Genetics of the Human Neutrophil Antigens. Transfus Med Hemother. 2018. doi: 10.1159/000491031

  24. Li Y, Mair DC, Schuller RM, Li L, Wu J. Genetic mechanism of human neutrophil antigen 2 deficiency and expression variations. PLoS Genet. 2015; 11:e1005255.

  25. Lopes LB, Baleotti WJr, Suzuki RB, Fabron A Jr, Chiba AK, Vieira-Filho JP, et al. HNA-3 gene frequencies in Brazilians and a new polymerase chain reactionrestriction fragment length polymorphism method for HNA- 3a/3b genotyping. Transfusion. 2014; 54: 1619-21.

  26. Mraz GA, Crighton GL, Christie DJ. Antibodies to human neutrophil antigen HNA-4b implicated in a case of neonatal alloimmune neutropenia. Transfusion. 2016; 56: 1161-65.

  27. Okazaki H, Ishikawa O, Iijima T, Kohira T, Teranishi M, Kawasaki S, et al. Novel swine model of transfusionrelated acute lung injury. Transfusion. 2014; 54(12):3097-107. doi: 10.1111/trf.12766

  28. Heemskerk N, Asimuddin M, Oort C, van Rijssel J, van Buul JD. Annexin A2 limits neutrophil transendothelial migration by organizing the spatial distribution of ICAM-1. J Immunol. 2016; 196(6):2767-78. doi: 10.4049/jimmunol.1501322

  29. Schimmel L, Heemskerk N, van Buul JD. Leukocyte transendothelial migration: a local affair. Small GTPases. 2017; 8(1):1-15. doi: 10.1080/21541248.2016.1197872

  30. Silliman CC, Fung YL, Ball JB, Khan SY. Transfusion-related acute lung injury (TRALI): Current Concepts and Misconceptions. Blood Rev. 2009; 23(6): 245-55. doi:10.1016/j.blre.2009.07.005

  31. Morsing KSH, Peters AL, van Buul JD, Vlaar APJ: The role of endothelium in the onset of antibody-mediated TRALI. Blood Rev. 2018; 32: 1-7.

  32. Sachs UJ, Hattar K, Weissmann N, Bohle RM, Weiss T, Sibelius U, et al. Antibody-induced neutrophil activation as a trigger for transfusion-related acute lung injury in an ex vivo rat lung model. Blood. 2006; 107(3):1217-9. doi:10.1182/blood-2005-04-1744

  33. Porcelijn L, de Haas M. Neonatal Alloimmune Neutropenia. Transfus Med Hemother. 2018. doi: 10.1159/000492949

  34. Goodnough LT, Panigrahi AK. Blood transfusion therapy. Med Clin North Am. 2017; 101: 431-47. doi: 10.1016/j.mcna.2016.09.012

  35. Lee YL, King MB, Gonzalez RP, Brevard SB, Frotan MA, Gillespie MN, et al. Blood transfusion products contain mitochondrial DNA damage-associated molecular patterns: a potential effector of transfusion-related acute lung injury. J Surg Res. 2014; 191: 286-9

  36. Eder AF, Dy BA, O'Neill EM. Predicted effect of selectively testing female donors for HLA antibodies to mitigate transfusion-related acute lung injury risk from apheresis platelets. Transfusion. 2016; 56:1608-15. doi: 10.1111/trf.13482

  37. Roubinian NH, Looney MR, Kor DJ, Lowell CA, Gajic O, Hubmayr RD, et al. Cytokines and clinical predictors in distinguishing pulmonary transfusion reactions. Transfusion. 2015; 55(8):1838-46. doi: 10.1111/trf.13021

  38. Lee JA, Sauer B, Tuminski W, Cheong J, Fitz-Henley J2nd, Mayers M, et al. Best Pharmaceuticals for Children Act – Pediatric Trials Network Steering Committee: Effectiveness of granulocyte colony-stimulating factor in hospitalized infants with neutropenia. Am J Perinatol. 2017; 34: 458-64.

  39. Peters AL, van Hezel ME, Juffermans NP, Vlaar AP. Pathogenesis of non-antibody mediated transfusionrelated acute lung injury from bench to bedside. Blood Rev. 2015; 29(1):51-61. doi: 10.1016/j.blre.2014.09.007

  40. Toy P, Bacchetti P, Grimes B, Gajic O, Murphy EL, Winters JL, et al. Recipient clinical risk factors predominate in possible transfusion-related acute lung injury. Transfusion. 2015; 55(5): 947-52. doi: 10.1111/trf.12954

  41. Hendrickson JE, Roubinian NH, Chowdhury D, Brambilla D, Murphy EL, Wu Y, et al., National Heart, Lung, and Blood Institute (NHLBI) Recipient Epidemiology and Donor Evaluation Study (REDS-III). Incidence of transfusion reactions: a multicenter study utilizing systematic active surveillance and expert adjudication. Transfusion. 2016; 56:2587-96. doi: 10.1111/trf.13730

  42. Rogers TS, Fung MK, Harm SK. Recent Advances in Preventing Adverse Reactions to Transfusion. F1000Research. 2015; 4: 1469. doi: 10.12688/f1000research.7048.1

  43. Simancas-Racines D, Osorio D, Marti-Carvajal AJ, Arevalo-Rodriguez I. Leukoreduction for the prevention of adverse reactions from allogeneic blood transfusion. Cochrane Database Syst Rev. 2015;(12): doi: 10.1002/14651858.CD009745 .pub2.

  44. Van Stein D, Beckers EA, Peters AL, Porcelijn L, Middelburg RA, Lardy NM, et al. Underdiagnosing of antibody-mediated transfusion-related acute lung injury: evaluation of cellular-based versus bead-based techniques. Vox Sang. 2016; 111:71-8. doi: 10.1111/vox.12383

  45. Bierling P, Bux J, Curtis B, Flesch B, Fung L, Lucas G, et al. Recommendations of the ISBT Working Party on Granulocyte Immunobiology for leucocyte antibody screening in the investigation and prevention of antibodymediated transfusion-related acute lung injury. 2009; 96(3):266-9. doi: 10.1111/j.1423-0410.2008.01144.x

  46. Simtong P, Romphruk AV, Hofmann C, Reil A, Sachs UJ, Santoso S. Improvement of monoclonal antibody– immobilized granulocyte antigen assay for the detection of anti-HNA-1 alloantibodies. Transfusion. 2018; 58:200-7. doi:10.1111/trf.14428

  47. Müller MC, van Stein D, Binnekade JM, Rhenen DJ, Vlaar AP. Low-risk transfusion-related acute lung injury donor strategies and the impact on the onset of transfusion related acute lung injury: a meta-analysis. Transfusion. 2015; 55(1): 164-75. doi: 10.1111/trf.12816

  48. Salpeter SR, Buckley JS, Chatterjee S: Impact of more restrictive blood transfusion strategies on clinical outcomes: a meta-analysis and systematic review. Am J Med. 2014; 127(2): 124-131.e3. doi: 10.1016/j.amjmed.2013.09.017

  49. Schmickl CN, Mastrobuoni S, Filippidis FT, Shah S, Radic J, Murad MH, et al. Male-predominant plasma transfusion strategy for preventing transfusion-related acute lung injury: a systematic review. Crit Care Med. 2015; 43(1): 205-25. doi: 10.1097/CCM.0000000000000675

  50. Middelburg RA, van der Bom JG. Transfusion-related acute lung injury not a two-hit, but a multicausal model. Transfusion. 2015; 55:953-60. doi: 10.1111/trf.12966.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cub de Tec de la Sal. 2018;9