medigraphic.com
SPANISH

Revista Biomédica

Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 2

<< Back Next >>

Rev Biomed 2019; 30 (2)

Papel potencial de Aedes albopictus Skuse en la transmisión de virus dengue (DENV) en una zona de actividad piñera de Costa Rica

Calderón-Arguedas Ó, Moreira-Soto RD, Vicente-Santos A, Corrales-Aguilar E, Rojas-Araya D, Troyo A
Full text How to cite this article

Language: Spanish
References: 39
Page: 33-41
PDF size: 346.83 Kb.


Key words:

Aedes, Culicidae, dengue, Flavivirus, Costa Rica.

ABSTRACT

Objective. To evaluate, under an ecological perspective, the presence of Aedes albopictus and the wild infection by dengue viruses (DENV) in an area of pineapple activity in Costa Rica.
Materials and methods. Adult mosquitoes were collected in forest galleries limiting pineapple plantations, houses adjacent to plantations (‹1 km), and distant houses (1-10 km). Shannon-Wiener index was used to estimate biodiversity. Larval infestation was evaluated in pineapple plants and houses, and aedic house (HI) and container (CI) indices were calculated. Detection of DENV in Ae. albopictus adults (bodies and heads) and larvae was performed by RT-PCR and sequencing.
Results. A total 1376 adult mosquitoes were collected: Ae. albopictus (5.81%), Anopheles apicimacula (5.01%), Culex coronator (11.55%), Cx. inflictus (6.1%), Cx. nigripalpus (48.11%), Cx. quinquefasciatus (23.34%), and Limatus durhamii (0.07%). Biodiversity index was higher in forest galleries. Most adult Ae. albopictus were collected in forests close to pineapple fields (73/80), although only 2 larvae were detected in pineapple plants. Larval indices in adjacent houses (HI: 40.7%, CI: 26.9%) and distant houses (HI: 51.7%, CI: 29.6%) were similar (HI Z=0.56, p=0.58; CI Z=0.16, p=0.87). DENV-2 and DENV-3 were detected in 2/20 “pools” of Ae. albopictus heads and DENV-1 in 2/74 “pools” of larvae.
Conclusion. Forest galleries that are in proximity to pineapple plantations could be considered “ecological islands” that are suitable for refuge of Ae. albopictus. Presence of DENV in adults and larvae suggests an active role for Ae. albopictus in virus transmission within this ecosystem.


REFERENCES

  1. Rai K. Ae. albopictus in the Americas. Annu Rev Entomol. 1991; 36:459-84

  2. Gratz NG. Critical review of the vector status of Ae. albopictus. Med Vet Entomol. 2004; 18:215-27.

  3. Calderón-Arguedas O, Avendaño A, López-Sánchez W. Expansion of Ae. albopictus Skuse in Costa Rica. Rev Ibero-Latinoamer Parasitol. 2010; 69:220-22.

  4. Marín-Rodríguez R, Díaz-Ríos M, Álvarez-Gutiérrez Y, Calderón-Arguedas O. Sitios de cría de Aedes aegypti (Linnaeus) y distribución geográfica de Aedes albopictus (Skuse) en la provincia de Limón, Costa Rica. 2012. Rev Cubana Med Trop. 2014; 66:219-27.

  5. Marín-Rodríguez R., Calderón-Arguedas O, Díaz Ríos M, Duarte Solano G, Valle-Arguedas J, Troyo-Rodríguez A. Primer hallazgo de Aedes albopictus Skuse en el Gran Área Metropolitana de Costa Rica. Rev Costarr Salud Pública. 2014; 23:1-4.

  6. Rojas-Araya D, Marín-Rodríguez R, Gutiérrez-Alvarado M, Romero-Vega LM, Calderón-Arguedas O, Troyo A. Nuevos registros de Aedes albopictus en cuatro localidades de Costa Rica. Rev Bioméd. 2017; 28:79-88.

  7. Rai KS. Ae. albopictus in the Americas. Annu Rev Entomol. 1991; 36:459-84.

  8. Grard G, Caron M, Mombo IM, Nkoghe D, Ondo SM, Jiolle D. Zika virus in Gabon (Central Africa)-2007. A new threat from Aedes albopictus? PLoS Negl Trop Dis. 2014; 8:e2681. http://dx.doi.org/10.1371/journal. pntd.0002681

  9. Di Luca M, Severini F, Toma L, Boccolini D, Romi R, Remoli ME, et al. Experimental studies of susceptibility of Italian Aedes albopictus to Zika virus. Euro Surveill. 2016;21:30223. http://dx.doi.org/10.2807/1560-7917. ES.2016.21.18.30223

  10. Cancrini G, Frangipane di Regalbono A, Ricci I, Tessarin C, Gabrielli S, Pietrobelli M. Aedes albopictus is a natural vector of Dirofilaria immitis in Italy. Vet Parasitol 2003; 30:118:195-202.

  11. Paupy C, Girod R, Salvan M, Rodhaim F, Failloux AB. Population Aedes albopictus from La Réunion Island (Indian Ocean) with respect to susceptibility to dengue virus. Heredity. 2001; 87:278-83.

  12. Effler PV, Pang L, Kitsutani P, Vorndam V, Nakata M, Ayers T, et al. Dengue fever. Hawaii, 2001-2002. Emerg Infect Dis. 2005; 11:742-9.

  13. Ramchurn SK, Moheeput K, Goorah SS. An analysis of a short-lived outbreak of dengue fever in Mauritius. Euro Surveill. 2009; 14:19314.

  14. Maglianesi Sandoz MA. Desarrollo de las piñeras en Costa Rica y su impacto sobre ecosistemas naturales y agro urbanos. Biocenosis. 2013; 27:62-70.

  15. Herrero MV, Montes-Pico L, Hernández R. Abundancia relativa de Stomoxys calcitrans (L.) (Diptera: Muscidae) en seis localidades del Pacífico Sur de Costa Rica. Rev Biol Trop. 1991; 39:309-10.

  16. Calderón-Arguedas O, Troyo A, Moreira-Soto R, Marín R, Taylor L. Dengue viruses in Aedes albopictus Skuse from a pineapple plantation in Costa Rica. J Vector Ecol. 2015; 40:184-6.

  17. Eapen A, Ravindarn KJ, Dash AP. Breeding potential of Ae. albopictus (Skuse 1895) in chikungunya affected areas in Kerala, India. Indian J Med Res. 2010; 132:733-5.

  18. Solano J, Villalobos R. Aspectos fisiográficos aplicados a un bosquejo de regionalización geográfico climático de Costa Rica. Top Meteor Oceanog. 2001; 8:26-39.

  19. Darsie RF. Keys to mosquitoes of Costa Rica (Diptera, Culicidae). Columbia: International Center for Disease Control, University of South Carolina; 1993. 58 p.

  20. Rueda LM. Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with dengue virus transmission. Zootaxa. 2004;589;1-60.

  21. Daniel WW. Bioestadística: Base para el análisis de la salud. 3ra ed. México DF: Limusa; 1988.

  22. Pla L. Biodiversidad: Inferencia basada en el índice de Shannon y la riqueza. Interciencia. 2006;31:583-90.

  23. Organización Mundial de la Salud (OMS), Programa Especial para Investigación y Capacitación en Enfermedades Tropicales (TDR). Dengue. Guías para el diagnóstico, tratamiento, prevención y control. Genova: OMS/TDR; 2010.

  24. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol. 1992;30:545-51.

  25. De Thoisy B, Lacoste V, Germain A, Muñoz-Jordán J, Colón C, Mauffrey JF, et al. Dengue infection in neotropical forest mammals. Vector Borne Zoonotic Dis. 2009; 9:157-70.

  26. Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Res. 2010;38: W23-8.

  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28:2731-9.

  28. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 2012; 9:772.

  29. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics. 2001; 17:754-5.

  30. Ronquist F, Huelsenbeck JP. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003; 19:1572-4.

  31. Goulart-Mocellin M, César-Simões T, Fernandes- Silva do Nascimento T, Franca-Teixeira ML, Lounibos LP, de Oliveira RL. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus? Mem Inst Oswaldo Cruz. 2009;104:1171-6.

  32. Lourenço-de-Oliveira R, Castro MG, Braks MA, Lounibos LP. The invasion of urban forest by dengue vectors in Rio de Janeiro. J Vector Ecol. 2004; 29:94-100.

  33. Vitek CJ, Richards SL, Mores CN, Day JF, Lord CC. Arbovirus transmission by Culex nigripalpus in Florida. J Med Entomol. 2008; 45:483-93.

  34. Kuno G, Chang GJ. Biological transmission of arboviruses: Reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev. 2005; 18:608-37.

  35. Honorio NA, Goncalves-Castro M, Monteiro de Barros FS, Magalhaes M, Sabroza PC. The spatial distribution of Aedes aegypti and Aedes albopictus in a transition zone, Rio de Janeiro, Brazil. Cad Saúde Pública. 2009; 25:1203-14.

  36. Camara DCP, Codeço CT, Juliano SA, Lounibos LP, Riback TIS, Pereira GR, et al. Seasonal differences in density but similar competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil. PLoS ONE 2016;11:e0157120. http://dx.doi.org/10.1371/journal.pone.0157120

  37. Ministerio de Salud, Vigilancia de la Salud. Dengue 2013-2018. [en línea] 2018. [Fecha de acceso 6 de noviembre del 2018]. Disponible en: https://www. ministeriodesalud.go.cr/index.php/vigilancia-dela- salud/analisis-de-situacion-de-salud

  38. González-Elizondo, M. 2014. Informe de vigilancia basada en laboratorio. Datos de análisis serológicos y serotipos circulantes de dengue Costa Rica, enerodiciembre, 2014. INCIENSA, Centro Nacional de Referencia de Virología. [en línea] 2015. [Fecha de acceso 6 de noviembre del 2018]. Disponible en URL: https://www.inciensa.sa.cr/vigilancia_ epidemiologica/informes_vigilancia/2014/Virologia/ Informe%20anual%20de%20vigilancia%20basada%20 en%20laboratorio%20de%20dengue%202014.pdf.

  39. Organización Panamericana de la Salud (OPS). Dengue: Datos, mapas y estadísticas de OPS/OMS. [en línea] 2009. [Fecha de acceso 16 de febrero del 2017]. Disponible en: URL: http://www.who.int/ topics/dengue/9789995479213_spa.pdf




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Biomed. 2019;30