medigraphic.com
SPANISH

Revista Cubana de Oftalmología

ISSN 1561-3070 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2018, Number 3

<< Back Next >>

Rev Cub Oftal 2018; 31 (3)

High-technology imaging systems in cataract surgery

Cuan AY, Montero DE, Álvarez MJ, Pérez CE, Cárdenas DT, Hormigó PIF
Full text How to cite this article

Language: Spanish
References: 27
Page: 1-12
PDF size: 452.84 Kb.


Key words:

imaging systems, topography, aberrometry, astigmatism, meridian.

ABSTRACT

Current cataract surgery has become refractive surgery, for it is also aimed at correcting both spherical and cylindrical refractive defects in the same procedure, thus achieving emmetropia without optical correction at all distances. For this we must have a true reading of the total corneal astigmatism and a correct identification of the meridian to be treated. Today there are advanced technological devices capable of providing these and other preoperative and intraoperative data with great reliability. Some of these systems, such as Verion, Callisto Eye and TrueGuide, use corneal topography with limbus registration and after capturing a preoperative image, they "remember" it during surgery to generate the target meridian on a monitor or through the surgical microscope, thus helping achieve precise alignment of the toric intraocular lens. They can even offer live three-dimensional images. Others, such as the ORA and Holos IntraOp systems, use intraoperative wavefront aberrometry to help the surgeon choose the power of the toric intraocular lens and then align it. These instruments provide continuous refractive feedback in real time for astigmatic correction in the same surgical act. Undoubtedly, these systems are part of a technological revolution within the field of current crystalline lens surgery that enable greater precision and prediction of refractive results and are essential elements if we want to achieve cataract surgery of excellence. This review was conducted to obtain information about high-technology imaging systems currently used in crystalline lens surgery, and show their potential to achieve more accurate postoperative refractive results.


REFERENCES

  1. Cristóbal JA, Del Buey MA. Corrección del astigmatismo en la cirugía del cristalino. Capítulo 101. En: Centurión V, Nicoli C, Chávez ME. Cristalino de las Américas - La cirugía del cristalino Hoy. Editorial Jaypee- Highlights Medical Publishers, Inc.; 2016.

  2. Alió JL, Rodríguez- Prats JL, Galal A, Ramzy M. Outcomes of microincision cataract surgery versus coaxial phacoemulsification. Ophthalmology. 2005; 112(11):1997- 2003.

  3. Stangoniannis DE, Stangoniannis DC. Calidad de visión en cirugía de catarata. Capítulo 6. En: Centurión V, Nicoli C, Chávez ME. Cristalino de las Américas- La Cirugía del Cristalino Hoy. Edición en Español. Editorial Jaypee- Highlights Medical Publishers, Inc.; 2016.

  4. Khan MI, Muhtaseb M. Prevalence of corneal astigmatism in patients having routine cataract surgery at a teaching hospital in the United Kingdom. J Cataract Refract Surg. 2011;37(10):1751–5.

  5. Cristóbal JA, Mateo A, Faus F. Bases del astigmatismo. En: Cristóbal JA. Corrección del astigmatismo. Madrid: Ed Mac Line. 2006:33-40.

  6. Oshika T, Tomidokoro A, Tsuji H. Regular and irregular refractive powers of the front and back surfaces of the cornea. Exp Eye Res. 1998;67(4):443–7.

  7. Miyake T, Shimizu K, Kamiya K. Distribution of posterior corneal astigmatism according to axis orientation of anterior corneal astigmatism. PLoS One. 2015;10(1):0117194.

  8. Goggin M, Zamora-Alejo K, Esterman A, van Zyl L. Adjustment of anterior corneal astigmatism values to incorporate the likely effect of posterior corneal curvature for toric intraocular lens calculation. J Refract Surg. 2015;31(2):98–102.

  9. Stuart A. High-Tech Toric IOL Axis Alignment. EYENET; 2015 [citado 4 de abril de 2018]:40-5. Disponible en: https://www.aao.org/eyenet/article/high-tech-toric-iolaxis- alignment

  10. Farooqui JH, Koul A, Dutta R, Shroff NM. Comparison of two different methods of preoperative marking for toric intraocular lens implantation: bubble marker versus pendulum marker. Int J Ophthalmol. 2016;9(5):703–6.

  11. Kent C. Toric IOLs: nailing the target meridian. Surgeons explain how to provide your patients with outstanding results using these lenses. Review of Ophthalmology; 2017 [citado 4 de abril de 2018]. Disponible en: https://www.reviewofophthalmology.com/article/toric-iols-nailing-the-target-meridian

  12. Davison JA, Potvin R. Refractive cylinder outcomes after calculating toric intraocular lens cylinder power using total corneal refractive power. Clin Ophthalmol. 2015;9:1511–17.

  13. Hirnschall N, Gangwani V, Crnej A, Koshy J, Maurino V, Findl O. Correction of moderate corneal astigmatism during cataract surgery: toric intraocular lens versus peripheral corneal relaxing incisions. J Cataract Refract Surg. 2014;40(3):354–61.

  14. Visser N, Berendschot TT, Bauer NJ, Nuijts RM. Vector analysis of corneal and refractive astigmatism changes following toric pseudophakic and toric phakic IOL implantation. Invest Ophthalmol Vis Sci. 2012;53(4):1865-73.

  15. Visser N, Bauer NJ, Nuijts RM. Toric intraocular lenses: historical overview, patient selection, IOL calculation, surgical techniques, clinical outcomes, and complications. J Cataract Refract Surg. 2013;39(4):624-37.

  16. Doors M, Budo CJ, Christiaans BJ, Luger M, Marinho AA, Dick HB, et al. Artiflex Toric foldable phakic intraocular lens: short-term results of a prospective European multicenter study. Am J Ophthalmol. 2012;154(4):730-9.

  17. Ventura BV, Wang L, Weikert MP, Robinson SB, Koch DD. Surgical management of astigmatism with toric intraocular lenses. Arq Bras Oftalmol. 2014;77(2):125-31.

  18. Holzer M. Evaluation of image guidance system during cataract and refractive surgery. ASCRS ASOA Symposium and Congress; 2015 [citado 4 de abril de 2018]. Disponible en: https://ascrs.confex.com/ascrs/15am/webprogram/Paper17342.html

  19. Coleman M, Stark W, Daoud Y. A comprehensive guide to managing astigmatism in the cataract patient. Exp Rev Ophthalmol 2014;9:539-44.

  20. Elhofi AH, Helaly HA. Comparison between digital and manual marking for toric intraocular lenses. Medicine (Baltimore). 2015;94(38):1618.

  21. Robert J. Weinstock. The latest and greatest in intraoperative guidance tools. Cat Refract Surg Tod. 2014 [citado 4 de abril de 2018]. Disponible en: https://crstoday.com/articles/2014-jun/the-latest-and-greatest-in-intraoperative/

  22. Browne AW, Osher RH. Optimizing precision in toric lens selection by combining keratometry techniques. J Refract Surg. 2014;30:1:67-72.

  23. Bethke W. The integrated cataract surgical suite. Review of Ophthalmology. 2014 [citado 4 de abril de 2018]. Disponible en: https://www.reviewofophthalmology.com/article/the-integrated-cataract-surgicalsuite

  24. Zeiss Cataract Suite markerless. Products designed to work together for markerless toric IOL alignment. Carl Zeiss Meditec AG, 2015. https://applications.zeiss.com/C1257A290053AE30/0/0D2B0B8201B86B28C1257BF6 002FB70D/$FILE/zeiss_cataract_suite_markerless_en_32_010_0002ii.pdf

  25. Woo YJ, Lee H, Kim HS. Comparison of 3 marking techniques in preoperative assessment of toric intraocular lenses using a wavefront aberrometer. J Cat Refr Surg. 2015;41:1232–40.

  26. Koch DD, Ali SF, Weikert MP, Shirayama M, Jenkins R, Wang L. Contribution of posterior corneal astigmatism to total corneal astigmatism. J Cat Refr Surg. 2012;38(12):2080-7.

  27. Hura AS, Osher RH . Comparing the Zeiss Callisto Eye and the Alcon Verion Image Guided System Toric Lens Alignment Technologies. J Refract Surg. 2017;33(7):482-7.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cub Oftal. 2018;31