medigraphic.com
SPANISH

Cardiovascular and Metabolic Science

ISSN 2954-3835 (Electronic)
ISSN 2683-2828 (Print)
Antes Revista Mexicana de Cardiología

Ver Revista Mexicana de Cardiología


  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 2

Next >>

Cardiovasc Metab Sci 2019; 30 (2)

G-proteins coupled receptors

Nájera N, Martínez‑Vega RP, Portilla‑Martínez A, Ortiz‑Vilchis P, Ceballos G
Full text How to cite this article

Language: English
References: 69
Page: 50-59
PDF size: 340.73 Kb.


Key words:

Membrane receptors, GPCR, G-proteins.

Text Extraction

Introduction

The membrane receptors (GPCRs) coupled to regulatory binding proteins (G proteins), also known as R7G (receptors with 7 transmembrane domains, coupled to guanine nucleotide G proteins (Figure 1), heptahelical or serpentine receptors, form a large and ubiquitous protein superfamily, in charge of fundamental cellular functions. In humans, more than 800 of such receptors have been cloned, although a great proportion of them remains orphaned (without known ligand), while many others have been poorly, structurally and functionally, characterized.


REFERENCES

  1. Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009; 459: 356-363.

  2. Strosberg AD. Structure/function relationship of proteins belonging to the family of receptors coupled to GTP-binding proteins. Eur J Biochem. 1991; 196: 1-10.

  3. Hu GM, Mai TL, Chen CM. Visualizing the GPCR network: Classification and evolution. Scientific Reports. 2017; 7: 15495.

  4. Wacker D, Stevens RC, Roth BL. How ligands illuminate GPCR molecular pharmacology. Cell. 2017; 170: 414-427.

  5. Katritch V, Cherezov V, Stevens RC. Structure-function of the G-protein-Coupled receptor superfamily. Annu Rev Pharmacol Toxicol. 2013; 53: 531-556.

  6. Riddy DM, Delerive P, Summers RJ, Sexton PM, Langmead CJ. G protein-coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus. Pharmacol Rev. 2018; 70: 39-67.

  7. Wang J, Gareri C, Rockman HA. G-Protein-coupled receptors in heart disease. Circ Res. 2018; 123: 716-735.

  8. Reimann F, Gribble FM. G protein-coupled receptors as new therapeutic targets for type 2 diabetes. Diabetologia. 2016; 59: 229-233.

  9. Park F. Activators of G Protein signaling in the kidney. J Pharmacol Exp Ther. 2015; 353: 235-242.

  10. Gurbel PA, Kuliopulos A, Tantry US. G-Protein–Coupled receptors signaling pathways in new antiplatelet drug development. Arterioscler Thromb Vasc Biol. 2015; 35: 500-512.

  11. Huang Y, Todd N, Thathiah A. The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention. Curr Opin Pharmacol. 2017; 32: 96-110.

  12. Billington CK, Pen RB. Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res. 2003; 4: 2.

  13. Assie G, Louiset E, Sturm N, René-Corail, F, Groussin L, Bertherat J et al. Systematic analysis of G protein-coupled receptor gene expression in adrenocorticotropin-independent macronodular adrenocortical hyperplasia identifies novel targets for pharmacological control of adrenal Cushing’s syndrome. J Clin Endocrinol Metab. 2010; 95: E253-E262.

  14. Geppetti P, Veldhuis NA, Lieu TM, Bunnett NW. G Protein-coupled receptors: dynamic machines for signaling pain and itch. Neuron. 2015; 88: 635-649.

  15. Lin HH, Hsiao CC, Pabst C, Hébert J, Schöneberg T, Hamann J. Adhesion GPCRs in regulating immune responses and inflammation. Adv Immunol. 2017; 136: 163-201.

  16. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017; 16: 829-842.

  17. Paavola KJ, Hall RA. Adhesion G protein-coupled receptors: signaling, pharmacology, and mechanisms of activation. Mol Pharmacol. 2012; 82: 777-783.

  18. Mustafi D, Palczewski K. Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol Pharmacol. 2009; 75: 1-12.

  19. Ciccarelli M, Sorriento D, Coscioni E, Iaccarino G, Santulli G. Adrenergic receptors. academic press. London UK: Endocrinology of the Heart in Health and Disease: Integrated, Cellular, and Molecular Endocrinology of the Heart; 2009. pp. 285-315.

  20. Eglen RM. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol. 2006; 26: 219-233.

  21. Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V. Adenosine receptors: expression, function and regulation. Int J Mol Sci. 2014; 15: 2024-2052.

  22. Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res. 1980; 47: 807-813.

  23. Lerman BB, Belardinelli L. Cardiac electrophysiology of adenosine. Basic and clinical concepts. Circulation. 1991; 83: 1499-1509.

  24. Singh KD, Karnik SS. Angiotensin receptors: structure, function, signaling and clinical applications. J Cell Signal. 2016; 1: 111.

  25. Li Y, Li XH, Yuan H. Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovasc Diagn Ther. 2012; 2: 56-62.

  26. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M. The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: Focus on angiotensin-(1-7). Physiol Rev. 2018; 98: 505-553.

  27. Lavoie JL, Sigmund CD. Minireview: overview of the renin-angiotensin system--an endocrine and paracrine system. Endocrinology. 2003; 144: 2179-2183.

  28. Bortolato A, Doré AS, Hollenstein K, Tehan BG, Mason JS, Marshall FH. Structure of Class B GPCRs: new horizons for drug discovery. Br J Pharmacol. 2014; 171: 3132-3145.

  29. Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci USA. 1992; 89: 8641-8645.

  30. Seino Y, Fukushima M, Yabe D. GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabetes Investig. 2010; 1: 8-23.

  31. MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AMF, Light PE, Wheeler MB. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes. 2002; 51 (suppl 3): S434-S442.

  32. Hauger RL, Risbrough V, Brauns O, Dautzenberg FM. Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol Disord Drug Targets. 2006; 5: 453-479.

  33. Slater PG, Yarur HE, Gysling K. Corticotropin-releasing factor receptors and their interacting proteins: functional consequences. Mol Pharmacol. 2016; 90: 627-632.

  34. Masi L, Brandi ML. Calcitonin and calcitonin receptors. Clin Cases Miner Bone Metab. 2007; 4: 117-122.

  35. Vilardaga JP, Romero G, Friedman PA, Gardella TJ. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm. Cell Mol Life Sci. 2011; 68: 1-13.

  36. Henning RJ, Sawmiller DR. Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc Res. 2001; 49: 27-37.

  37. Chun L, Zhang WH, Liu JF. Structure and ligand recognition of class C GPCRs. Acta Pharmacol Sin. 2012; 33: 312-323.

  38. Pin JP, Acher F. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Targets CNS Neurol Disord. 2002; 1: 297-317.

  39. Simeone TA, Sanchez RM, Rho JM. Molecular biology and ontogeny of glutamate receptors in the mammalian central nervous system. J Child Neurol. 2004; 19: 343-360.

  40. Rondard P, Goudet C, Kniazeff J, Pin JP, Prezeau L. The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABABclass C G protein-coupled receptors. Neuropharmacology. 2011; 60: 82-92.

  41. Betke KM, Wells CA, Hamm HE. GPCR mediated regulation of synaptic transmission. Prog Neurobiol. 2012; 96: 304-321.

  42. Grupo de estudio CINAREN, Torregrosa JV, Morales E, Díaz JM, Crespo J, Bravo J et al. Cinacalcet en el manejo del hiperparatiroidismo secundario normocalcémico tras el trasplante renal: estudio multicéntrico de un año de seguimiento. Nefrología. 2014; 34: 62-68.

  43. Francia S, Pifferi S, Menini A, Tirindelli R. Vomeronasal receptors and signal transduction in the vomeronasal organ of mammals. In: Mucignat-Caretta C, editor. Neurobiology of chemical communication. Chapter 10. Boca Raton (FL): CRC Press/Taylor & Francis; 2014.

  44. Meredith M. Human vomeronasal organ function: a critical review of best and worst cases. Chem Sens. 2001; 26: 433-445.

  45. Trotier D. Vomeronasal organ and human pheromones. Eur Ann Otorhinolaryngol Head Neck Dis. 2011; 128: 184-190.

  46. Sanematsu K, Yoshida R, Shigemura N, Ninomiya Y. Structure, function, and signaling of taste G-protein-coupled receptors. Curr Pharm Biotechnol. 2014; 15: 951-961.

  47. Melis M, Tomassini-Barbarossa IT. Taste perception of sweet, sour, salty, bitter, and umami and changes due to l-Arginine supplementation, as a function of genetic ability to taste 6-n-propylthiouracil. Nutrients. 2017; 9: 541.

  48. Running CA, Craig BA, Mattes RD. Oleogustus: the unique taste of fat. Chem Senses. 2015; 40: 507-516.

  49. Cygankiewicz AI, Maslowska A, Krajewska WM. Molecular basis of taste sense: involvement of GPCR receptors. Crit Rev Food Sci Nutr. 2014; 54 (6): 771-780.

  50. Ambaldhage VK, Puttabuddi JH, Nunsavath PN, Tummuru YR. Taste disorders: A review. JIAOMR. 2014; 26: 69-76.

  51. Feng P, Huang L, Wang H. Taste bud homeostasis in health, disease, and aging. Chem Senses. 2014; 39: 3-16.

  52. Henkin RI. Drug-induced taste and smell disorders. Incidence, mechanisms and management related primarily to treatment of sensory receptor dysfunction. Drug Saf. 1994; 11: 318-377.

  53. Prabhua Y, Mondal S, Eichingera L, Noege AA. A GPCR involved in post aggregation events in Dictyostelium discoideum. Developl Biol. 2007; 312: 29-43.

  54. Basith S, Cui M, Macalino SJY, Park J, Clavio NAB, Kang S et al. Exploring G protein-coupled receptors (GPCRs) ligand space via cheminformatics approaches: Impact on rational drug design. Front Pharmacol. 2018; 9: 128.

  55. Wright SC, Kozielewicz P, Kowalski-Jahn M, Petersen J, Bowin CF, Slodkowicz G et al. A conserved molecular switch in class F receptors regulates receptor activation and pathway selection. Nature Communication. 2019; 10: 667.

  56. Bjarnadóttir TK, Fredriksson R, Schiöth HB. The adhesion GPCR: a unique of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol. Life Sci. 2007; 64: 2014-2119.

  57. Kobilka BK. G protein coupled receptor structure and activation. Biochim Biophys Acta. 2007; 1768: 794-807.

  58. Gurevich VV, Gurevich EV. Molecular mechanisms of GPCR signaling: a structural perspective. Int J Mol Sci. 2017; 18: 2519.

  59. Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Mol Pharmacol. 2012; 82: 777-783.

  60. Birnbaumer L. The discovery of signal transduction by G proteins: a personal account and an overview of the initial findings and contributions that led to our present understanding. Biochim Biophys Acta. 2007; 1768 (4): 756-771.

  61. Milligan G, Kostenis E. Heterotrimeric G-proteins: a short history. Br J Pharmacol. 2006; 147 (Suppl 1): S46-S55.

  62. Griendling KK, Murphy TJ, Alexander RW. Molecular biology of the renin-angiotensin system. Circulation. 1993; 87: 1816-1828.

  63. Syrovatkina V, Alegre KO, Dey R, Huang XY. Regulation, signaling and physiological functions of G-proteins. J Mol Biol. 2016; 428: 3850-3868.

  64. Heider D, Hauke S, Pyka M, Kessler D. Insights into the classification of small GTPases. Adv Appl Bioinforma Chem. 2010; 3: 15-24.

  65. Song S, Cong W, Zhou S, Shi Y, Dai W, Zhang H et al. Small GTPases: structure, biological function and its interaction with nanoparticles. Asian J Pharm Sci. 2019; 14: 30-39.

  66. Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci. 2005; 118: 843-846.

  67. Colicelli J. Human RAS superfamily proteins and related GTPases. Sci STKE. 2004; (250): RE13.

  68. Hashemi M, Hoshyar R, Ande SR, Chen QM, Solomon C, Zuse A et al. Mevalonate cascade and its regulation in cholesterol metabolism in different tissues in health and disease. Curr Mol Pharmacol. 2017; 10: 13-26.

  69. Alizadeh J, Zeki AA, Mirzae N, Tewary S, Moghadam AR, Glogowska A et al. Mevalonate cascade inhibition by simvastatin induces the intrinsic apoptosis pathway via depletion of isoprenoids in tumor cells. Scientific Reports. 2017; 7: 44841.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Cardiovasc Metab Sci . 2019;30