medigraphic.com
SPANISH

Revista Cubana de Salud y Trabajo

ISSN 1991-9395 (Electronic)
ISSN 1608-6384 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 2

Next >>

Revista Cubana de Salud y Trabajo 2019; 20 (2)

Conversion from risk matrix to failure mode and effects analysis

Amador BZ, Torres VA
Full text How to cite this article

Language: Spanish
References: 10
Page: 3-10
PDF size: 517.72 Kb.


Key words:

risk analysis, risk matrix, failure mode and effects analysis (FMEA), nuclear medicine, diagnostic, therapy.

ABSTRACT

The application of combined risk analysis methods for ionizing radiation medicine, allows identifying as proactive manner weakness in the steps of process, which has influence in the improvement plan design. Many of these analyses have been executed on the base of risk matrix (RM). This approach uses defense measures, without taking into account the causes. In the other hand, the failure mode and effects analysis (FMEA), determining failure causes, which contributes to a more deeply focus for analysis. For this, the task of conversion from RM to FMEA results of particular interest. This is presented the use of a methodology which facilitates this transformation with the code SECURE-MR-FMEA 3.0, obtaining a consistency for both methods. In the same way, it was adapted the FMEA profile to nuclear medicine for patients, workers and public. With illustrative objectives, in the document is showed the transformation to FMEA profile for diagnostic from its RM model. Inside transformation it was considered the experts work, whose should convert to standard basic causes taking into account the original suggestions of computerized conversion. The conversion results are validated through a conservative method in the system. The research of causes for studied incidents is privileging with proposed methodology, as well as with the facility for identification of defense measures which avoiding their recurrence.


REFERENCES

  1. SaifulHuq M, et al. The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management, Med Phys. 2016;43(7).

  2. Hendee WR, Series Editor. Imaging in medical diag-nosis and therapy. Quality and safety in Radiother-apy. UK: CRC Press Taylor & Francis Group; 2011.

  3. Da Silva Teixeira FC, et al. Failure mode and effects analysis based risk profile assessment for stereotactic radiosurgery programs at three cancer centers in Brazil. Medical Physics. 2016; 43(1).

  4. International Atomic Energy Agency. Application of the risk matrix to radiotherapy. IAEA-TECDOC 1685 Series; 2012.

  5. Foro Iberoamericano de Organismos Reguladores Radiológicos y Nucleares. Código SEVRRA [Inter-net]. Disponible en: http://sevrra.cnsns.gob.mx.

  6. Torres A, Alonso JL, Alfonso R, Jacas M, Alonso D, Morales JL. Evaluación de riesgo de la práctica de radioterapia con rayos X de kilovoltaje. Revista Nu-cleus. 2017; 61:21-5.

  7. Torres A, Rivero JJ, Montes de Oca J, et al. Monito-reo dinámico de riesgo empleando matriz de riesgo en prácticas médicas con radiaciones ionizantes. Re-vista Nucleus. 2016;59:29-33.

  8. Torres A. Manual del usuario SECURE-MR-FMEA, Programa de análisis de riesgo basado en FMEA y matriz de riesgo; 2017.

  9. Rodríguez D, Torres A, Soria MA, Ayra FE. Evalua-ción de riesgos asociados a la producción de generado-res de Molibdeno-99/Tecnecio-99m. Revista Nucleus. 2017; 61:26-31.

  10. Centro Nacional de Seguridad Nuclear. Resolución N° 40. Guía para la práctica de medicina nuclear, Rev. 01/2011. La Habana: CNSN; 2011.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Cubana de Salud y Trabajo. 2019;20