medigraphic.com
SPANISH

Revista Habanera de Ciencias Médicas

ISSN 1729-519X (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Authors instructions        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 3

Revista Habanera de Ciencias Médicas 2019; 18 (3)

Antimicrobial resistance in bacteria isolated in fish and shellfish

Puig PY, Leyva CV, Aportela LN, Camejo JA, Tejedor AR
Full text How to cite this article

Language: Spanish
References: 29
Page: 500-512
PDF size: 636.23 Kb.


Key words:

antimicrobial resistance, bacteria, food, fish, seafood, antibiotic.

ABSTRACT

Introduction: The alarming increase of antibiotics resistance in bacteria is one of the greatest problems in Public Health. Bacteria in aquatic environments can transfer antimicrobial resistance genes to other bacteria, including pathogenic bacteria for humans, which is a health risk.
Objective: To determine the antimicrobial resistance in bacterial isolates from fish and shellfish.
Materials and methods: A total of 154 bacterial isolates were analyzed in fish and shellfish in the microbiology laboratory of the National Institute of Hygiene, Epidemiology and Microbiology. Antimicrobial susceptibility was determined by the Kirby- Bauer disc diffusion method according to the regulations of the Clinical and Laboratory Standards Institute. The analysis of the results was carried out by the WHONET 5.6 program.
Results: Resistance was identified in two strains of Salmonella and six ones of Escherichia coli, the resistance to ampicillin and tetracycline was higher. A multiresistance pattern was identified in multiresistant staphylococcus to chloramphenicol, erythromycin and tetracycline. Vibrio cholerae was the most frequent genus found in fish and shellfish; resistant strains were more frequent in oysters and freshwater fish.
Conclusions: The highest percentages of resistance were determined for ampicillin and tetracycline in the total of microorganisms studied. The oyster was considered the greatest risk product of dissemination of antimicrobialresistant bacteria.


REFERENCES

  1. Organización Mundial de la Salud. La contención de la resistencia a los antimicrobianos. Perspectivas políticas de la OMS sobre los medicamentos. Ginebra, Suiza: OMS [Internet]. 2005. [Consultado: 10/02/2016]. Disponible en: http://www.who.int/medicines

  2. Programa conjunto FAO/OMS. Informe de situación sobre la resistencia a los antimicrobianos. Comisión del Comisión del Codex Alimentarius, 39 períodos de sesiones, Roma, 6 al 13 de junio de 2015. [Internet] 2015. [Consultado: 18/6/2016]. Disponible en: www.fao.org/3/a-mm736s.pdf

  3. Organización Mundial de Sanidad Animal. Capítulo 6.5.- Análisis del riesgo asociado a la resistencia a los agentes antimicrobianos como consecuencia de su uso en animales acuáticos. Código Sanitario para los Animales Acuáticos -2017 OIE. Paris. [Internet] 2017 [consultado: 15/3/2018].Disponible en: http://www.oie.int/fileadmin/Home/esp/Health_sta ndards/aahc/current/chapitre_antibioresp_risk_anal ysis.pdf

  4. Heenatigala P, Fernando M. Occurrence of bacteria species liable for vibriosis in shrimp pond culture systems in Sri Lanka and assessment of the suitable control measures. Sri Lanka J. Aquat. Sci. [Internet]. 2016; 21(1):1- from: https://www.researchgate.net/publication/2958507 24

  5. Siriphap A, Leekitcharoenphon P, Kaas RS, Theethakaew C, Aarestrup FM, Sutheinkul O, Hendriksen RS. Characterization and genetic variation of Vibrio cholerae isolated from clinical and environmental sources in Thailand. PLoS One [Revista en internet]. 2017; 12(1): e0169324. cited: 20/02/2016 . Available from: https://doi.org/10.1371/journal.pone.0169324

  6. Organización Mundial de la Salud. Proyecto de plan de acción mundial sobre la resistencia a los antimicrobianos, Informe de la Secretaría. 68ª Asamblea Mundial de la Salud A68/20. Ginebra, Suiza: OMS. [Internet] 2015. [Consultado: 21/10/2017]. Disponible en: http://apps.who.int/gb/ebwha/pdf_files/WHA68/A6 8_R7-sp.pdf

  7. Fernández Abreu A, Bravo Fariñas L, Águila Sánchez A, Cruz Infante Y, Illnait Zaragozí MT, Llop Hernández A, et al. Susceptibilidad antimicrobiana en aislamientos cubanos de Vibrio cholerae O1 procedentes de muestras clínicas. Rev Cubana Med Trop [Internet]. 2016; 68(1): [Consultado: 26/03/2018]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid =S0375-07602016000100005&lng=es

  8. Beatriz Romeu AB. Caracterización de cepas de Escherichia coli de importancia clínica humana aisladas de ecosistemas dulceacuícolas de La Habana. Tesis presentada en opción al grado científico de Doctor en Ciencias Biológicas. Universidad de La Habana, Facultad de Biología. La Habana [Internet]. 2012. Consultado: 6/03/2017 . Disponible en: http://tesis.repo.sld.cu/625/1/Beatriz_Romeu_Alvar ez.pdf

  9. Puig Y, Espino M, Leyva V, Aportela N, Machín M, Soto P. Serovariedades y patrones de susceptibilidad a los antimicrobianos de cepas de Salmonella aisladas de alimentos en Cuba. Rev Panam Salud Pública. [Internet].2011; 30(6):561-5. Consultado: 6/03/2017 . Disponible en: https://www.scielosp.org/article/ssm/content/raw/? resource_ssm_path=/media/assets/rpsp/v30n6/a11v 30n6.pdf

  10. Organización Mundial de la Salud. WHONET 5.4. Software para la vigilancia de la resistencia antimicrobiana y control de infecciones. Geneva, Suiza: OMS. [Internet]. 2008. Consultado: 21/10/2014 . Disponible en: http://www.who.int/drugresistance/whonetsoftwar e

  11. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. M100-S25, 2015; 35(3).

  12. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: Sixteenth Informational Supplement. M100-S20. 2010; 30(1).

  13. Elbashir S, Parveen S, Schwarz J, Rippen T, Jahncke M, DePaola A. Patógenos de pescados y mariscos e información sobre resistencia a los antimicrobianos: Una revisión. Food Microbiol. Internet].2018 Apr; 70:85-93 Consultado: 20/10/2018 . Disponible en: https://www.researchgate.net/publication/3198714 07_Seafood_Pathogens_and_Information_on_Antim icrobial_Resistance_A_Review

  14. Ertas Onmaz N, Abay S, Karadal F, Hizlisoy H, Telli N, Al S. Occurence and antimicrobial resistance of Staphylococcus aureus and Salmonella spp. in retail fish samples in Turkey. Mar Pollut Bull. [Internet]. 2015 Jan15; 90(1-2):242- 6/07/201 Available from: http://doi:10.1016/j.marpolbul.2014.10.046

  15. World Health Organization (WHO). To guide research, discovery, and development of new antibiotics coordinating group and the advisory board in collaboration with WHO during a meeting held in http://www.who.int/medicines/publications/WHOPPL- Short_Summary_25Feb-ET_NM_WHO.pdf

  16. Obaidat MM, Salman AE, Lafi SQ. Prevalence of Staphylococcus aureus in Imported Fish and Correlations between Antibiotic Resistance and Enterotoxigenic City. J Food Prot. [Internet]. 2015 Nov. 78(11):1999- Available from: http://doi:10.4315/0362-028X.JFP- 15-104

  17. Hammad AM, Watanabe W, Fujii T, Shimamoto T. Occurrence and characteristics of methicillin-resistant and -susceptible Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci from Japanese retail ready-to-eat raw fish. Int J Food Microbiol. [Internet]. 2012 Jun. 156(3):286- Available from: http://doi:0.1016/j.ijfoodmicro.2012.03.022. Epub 2012 Mar 28.

  18. Leyva V, Puig Y, Espino M, Pereda G, Aportela N. Especies patógenas de Vibrio aisladas en alimentos de origen marino. Rev Panam Infectol. [Internet].2013; 15(1-4):25-32. Consultado: 6/03/2017 . Disponible en: http://www.revistaapi.com/wpcontent/ uploads/2014/09/mat-D_API-Vol-15.1-4-pg- 25-32-.pdf

  19. Kumar R, Lalitha K V. Prevalence and Molecular Characterization of Vibrio cholerae O1, Non-O1 and Non-O139 in Tropical Seafood in Cochin, India Foodborne Pathogens and Disease. [Internet].2013; http://doi:10.1089/fpd.2012.1310

  20. García-Aljaro C, Riera-Heredia J, Blanch AR. Antimicrobial resistance and presence of the SXT mobile element in Vibrio spp. isolated from aquaculture facilities. New Microbiol. [Internet]. 2014 Jul;37(3):339- from: http://www.newmicrobiologica.org/PUB/allegati_pd f/2014/3/339.pdf

  21. Oh EG, Son KT, Yu H, Lee TS, Lee HJ, Shin S, Kwon JY, Park K, Kim J. Antimicrobial resistance of Vibrio parahaemolyticus and Vibrio alginolyticus strains isolated from farmed fish in Korea from 2005 through 2007. J Food Prot. [Internet].2011 Mar 74(3):380- cited: 12/07/201 http://doi:10.4315/0362-028X.JFP-10-307

  22. Igbinosa EO. Detection and Antimicrobial Resistance of Vibrio Isolates in Aquaculture Environments: Implications for Public Health. Microb Drug Resist. Internet].2016Apr; 22(3):238- http://doi:10.1089/mdr.2015.0169

  23. European Food Safety Authority and European Centre for Disease Prevention and Control, The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA Journal. [Internet]. 2015; https://ecdc.europa.eu/sites/portal/files/media/en/ publications/Publications/zoonoses-trends-sources- EU-summary-report-2014.pdf

  24. Andersen JL, He GX, Kakarla P, Ranjana KC, Kumar S, Lakra WS, Mukherjee MM, et al. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health. [Internet].2015, 12(2):1487- from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC434 4678/

  25. Norma Cubana. Contaminantes Microbiológicos en Alimentos — Requisitos Sanitarios. NC. 585: 2017; XIII, 154(10): Boletín NConline. Disponible en: www.nconline.cubaindustria.cu/

  26. Ministerio de la Agricultura. Regulaciones Sanitaras, Instituto de Medicina Veterinaria, Resolución No. 25 de 2004.

  27. Fu J, Yang D, Jin M, Liu W, Zhao X, Li C, Zhao T, Wang J, Gao Z, Shen Z, Qiu Z, Li JW. Aquatic animals promote antibiotic resistance gene dissemination in water via conjugation: Role of different regions within the zebra fish intestinal tract, and impact on fish intestinal microbiota. Mol Ecol. [Internet]. 2017, 26(19):5318- https://www.ncbi.nlm.nih.gov/pubmed/28742284

  28. Song Yuze, Yu P, Li B, Pan Y, Zhang X, Cong J, Zhao Y, Wang H, Chen L. The mosaic accessory gene structures of the SXT/R391-like integrative and conjugative elements derived from Vibrio spp. isolated from aquatic products and environment in the Yangtze River estuary, China. BMC Microbiol. [Internet]. 2013; 13:214. cited: 22/03/2018 . Available from: http://doi:10.1186/1471-2180-13- 214

  29. Huss, H.H. Aseguramiento de la calidad de los productos pesqueros. Documento Técnico de Pesca. No. 334. Roma, FAO. [Internet].1997. 174p. Consultado: 20/10/2018 . . Disponible en: http://www.fao.org/3/t1768s/T1768S00




2020     |     www.medigraphic.com

Mi perfil

CÓMO CITAR (Vancouver)

Revista Habanera de Ciencias Médicas. 2019;18