medigraphic.com
SPANISH

Revista Médica Sinergia

Revista Médica Sinergia
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 10

<< Back Next >>

Revista Médica Sinergia 2019; 4 (10)

Epigenetic relation between maternal malnutricion and type 2 diabetes mellitus

Rodríguez NGF, Camacho BFA, Umaña BCA
Full text How to cite this article

Language: Spanish
References: 18
Page: 278
PDF size: 139.67 Kb.


Key words:

malnutrición, diabetes mellitus, fetal development, epigenetic, DNA methylation.

ABSTRACT

Currently, diabetes mellitus represents a major public health problem. Its high prevalence and incidence have made it one of the most common chronic diseases of recent years, only below high blood preassure, cancer and chronic obstructive pulmonary disease. Finding epigenetic evidence of the relationship between maternal malnutrición and the development of type two diabetes mellitus is achieved not only decrease the incidence rate of the disease, preventing maternal malnutrition, but also progress in treatment studies towards of the problem target as for epigenetics it is discussed.


REFERENCES

  1. Cubero-Alpízar C, Rojas-Valenciano LP. Comportamiento de la diabetes mellitus en Costa Rica. HORIZONTE SANITARIO. 2017 09 06;16(3). https://doi.org/10.19136/hs.a16n3.1871

  2. Sánchez, F. J. Gesteiro, E. Espárrago, M. Rodríguez, B y Bastida, S. (2013). La alimentación de la madre durante el embarazo condiciona el desarrollo pancreático, el estatus hormonal del feto y la concentración de biomarcadores al nacimiento de diabetes mellitus y síndrome metabólico. Nutrición Hospitalaria. 28(2):250-274. https://dx.doi.org/10.3305/nh.2013.28.2.6307

  3. Basain, V. Valdés, A. Miyar, P. Chirino, G. Álvarez, V. (2014). Proceso de programación fetal como mecanismo de producción de la obesidad en la vida extrauterina. Medisan. 18(10):1452-1459. https://www.medigraphic.com/pdfs/medisan/mds-2014/mds1410q.pdf

  4. Reyes RB, Carrocera LF. Programación metabólica fetal. Perinatología y Reproducción Humana. 2015 07;29(3):99-105. https://doi.org/10.1016/j.rprh.2015.12.003

  5. Lindblom R, Ververis K, Tortorella SM, Karagiannis TC. The early life origin theory in the development of cardiovascular disease and type 2 diabetes. Molecular Biology Reports. 2014 Oct 01;42(4):791- 797. https://doi.org/10.1007/s11033-014-3766-5

  6. Finer S, Iqbal MS, Lowe R, Ogunkolade BW, Pervin S, Mathews C, Smart M, Alam DS, Hitman GA. Is famine exposure during developmental life in rural Bangladesh associated with a metabolic and epigenetic signature in young adulthood? A historical cohort study. BMJ Open. 2016 Nov;6(11):e011768. https://doi.org/10.1136/bmjopen-2016-011768

  7. Li Y, Ley SH, Tobias DK, Chiuve SE, VanderWeele TJ, Rich-Edwards JW, Curhan GC, Willett WC, Manson JE, Hu FB, Qi L. Birth weight and later life adherence to unhealthy lifestyles in predicting type 2 diabetes: prospective cohort study. BMJ. 2015 07 21:h3672. https://doi.org/10.1136/bmj.h3672

  8. Li J, Liu S, Li S, Feng R, Na L, Chu X, Wu X, Niu Y, Sun Z, Han T, Deng H, Meng X, Xu H, Zhang Z, Qu Q, Zhang Q, Li Y, Sun C. Prenatal exposure to famine and the development of hyperglycemia and type 2 diabetes in adulthood across consecutive generations: a population-based cohort study of families in Suihua, China. The American Journal of Clinical Nutrition. 2016 Dec 07;105(1):221- 227. https://doi.org/10.3945/ajcn.116.138792

  9. Lumey LH, Khalangot MD, Vaiserman AM. Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932–33: a retrospective cohort study. The Lancet Diabetes & Endocrinology. 2015 Oct;3(10):787-794. https://doi.org/10.1016/s2213-8587(15)00279-x

  10. Rooij SR, Roseboom TJ, Painter RC. Famines in the Last 100 Years: Implications for Diabetes. Current Diabetes Reports. 2014 08 31;14(10). https://doi.org/10.1007/s11892-014-0536-7

  11. Quigley P. Mapeo del genoma humano: repercusiones en la práctica. Nursing (Ed. española). 2016 05;33(3):28-35. https://doi.org/10.1016/j.nursi.2016.06.015

  12. Vickers M. Early Life Nutrition, Epigenetics and Programming of Later Life Disease. Nutrients. 2014 06 02;6(6):2165-2178. https://doi.org/10.3390/nu6062165

  13. Rosales-Reynoso M, Ochoa-Hernández A, Juárez-Vázquez C, Barros-Núñez P. Epigenetic mechanisms in the development of memory and their involvement in certain neurological diseases. Neurología (English Edition). 2016 Nov;31(9):628-638. https://doi.org/10.1016/j.nrleng.2014.02.011

  14. Kurdyukov S, Bullock M. DNA Methylation Analysis: Choosing the Right Method. Biology. 2016 01 06;5(1):3. https://doi.org/10.3390/biology5010003

  15. Muka T, Nano J, Voortman T, Braun K, Ligthart S, Stranges S, Bramer W, Troup J, Chowdhury R, Dehghan A, Franco O. The role of global and regional DNA methylation and histone modifications in glycemic traits and type 2 diabetes: A systematic review. Nutrition, Metabolism and Cardiovascular Diseases. 2016 07;26(7):553-566. https://doi.org/10.1016/j.numecd.2016.04.002

  16. Ramírez, M. et al. (2015). El papel de la dieta materna en la programación metabólica y conductual: revisión de los mecanismos biológicos implicados. Redalyc. 32(6), 2433-2445. http://www.redalyc.org/articulo.oa?id=309243321012

  17. Haghverdizadeh P, Sadat Haerian M, Haghverdizadeh P, Sadat Haerian B. ABCC8 genetic variants and risk of diabetes mellitus. Gene. 2014 07;545(2):198-204. https://doi.org/10.1016/j.gene.2014.04.040

  18. De Franco E, Flanagan SE, Houghton JA, Allen HL, Mackay DJ, Temple IK, Ellard S, Hattersley AT. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. The Lancet. 2015 09;386(9997):957-963. https://doi.org/10.1016/s0140-6736(15)60098-8




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Médica Sinergia. 2019;4