medigraphic.com
SPANISH

Abanico Veterinario

ISSN 8541-3697 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 1

<< Back Next >>

AbanicoVet 2019; 9 (1)

Review: Function and regression of the corpus luteum during the estrous cycle

Aréchiga-Flores C, Cortés-Vidauri Z, Hernández-Briano P, Flores-Flores G, Rochín-Berumen F, Ruiz-Fernández E
Full text How to cite this article

Language: Spanish
References: 148
Page: 1-21
PDF size: 662.56 Kb.


Key words:

bovine, corpus luteum, progesterone, prostaglandins, luteolysis.

ABSTRACT

The corpus luteum (CL) is an ovarian structure made up of small cells and large cells. The function of CL is to produce progesterone, the hormone responsible for maintaining pregnancy. The CL begins its growth and development from day 3 of the estrous cycle (i.e., d 0 = day of estrus) and continues to grow until day 17 or 18 of the estrous cycle. If the fertilization and the formation of the embryo are carried out, this CL will remain throughout the gestation. Otherwise, if there is no pregnancy, the uterine endometrium will begin to secrete prostaglandins F2α (PGF2α), responsible for the destruction of the corpus luteum (luteolysis). The serum levels of progesterone decrease, generating an unblocking of the hypothalamus, with the subsequent secretion of the gonadotropin-releasing hormone, better known as GnRH. This generates the activation of the hypothalamic-pituitary-gonadal axis and the development of new follicles to have an ovulatory follicle in a period of 48 to 72 hours after the onset of luteolysis. A new estrus or estrus begins to favor a possible gestation. A literature review was made with the purpose of knowing the physiological mechanisms involved in the function and regression of the corpus luteum during the estrous cycle of cows.


REFERENCES

  1. ACOSTA E, Peña Ó, Naftolin F, Avila J, Palumbo A. 2009. Angiotensin II induces apoptosis in human mural granulosa-lutein cells, but not in cumulus cells. Fertility and Sterility. 91(5):1984-1989. https://doi.org/10.1016/j.fertnstert.2008.04.026

  2. ACOSTA TJ, Bah MM, Korzekwa A, Woclawek-Potocka I, Markiewicz W, Jaroczewski JJ, Okuda K, Sharzynski DJ. 2009. Acute changes in circulating concentrations of progesterone and nitric oxide and partial pressure of oxygen during prostaglandin F2α-induced luteolysis in cattle. Journal of Reproduction and Development. 55(2):149-155. https://doi.org/10.1262/jrd.20133

  3. ACOSTA TJ, Yoshizawa N, Ohtani M, Miyamoto A. 2002. Local changes in blood flow within the early and midcycle corpus luteum after prostaglandin F2α injection in the cow. Biology of Reproduction. 66(3):651- 658. https://doi.org/10.1095/biolreprod66.3.651

  4. ARUOMA OI. 1999. Antioxidant actions of plant foods: use of oxidative DNA damage as a tool for studying antioxidant efficacy. Free Radical Research. 30(6):419-427. https://doi.org/10.1080/10715769900300461

  5. ARUOMA OI, Spencer JPE, Mahmood N. 1999. Protection against oxidative damage and cell death by the natural antioxidant ergothioneine. Food and Chemical Toxicology. 37(11):1043-1053. https://doi.org/10.1016/S0278-6915(99)00098-8

  6. ATTARAN M, Pasqualotto E, Falcone T, Goldberg JM, Miller KF, Agarwal A, Sharma RK. 2000. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. International Journal of Fertility and Women's Medicine. 45(5):314-320. (PMID:11092702).

  7. BERISHA B, Schams D. 2005. Ovarian function in ruminants. Domestic Animal Endocrinology. 29(2):305- 317. https://doi.org/10.1016/j.domaniend.2005. 02.035

  8. BERISHA B, Schams D, Kosman M, Amselgruber W, Einspanier R. 2000. Expression and tissue concentration of vascular endothelial growth factor, Its receptors, and localization in the bovine corpus luteum during estrous Cycle and Pregnancy. Biology of Reproduction. 63(4):1106-1114. https://doi.org/10.1095/biolreprod63.4.1106

  9. BERISHA B, Schams D, Rodler D, Sinowat, F, Pfaffl MW. 2018. Changes in the expression of prostaglandin family members in bovine corpus luteum during the oestrous cycle and pregnancy. Molecular Reproduction and Development. 85(7):622-634. https://doi.org/10.1002/mrd.22999

  10. BERISHA B, Steffl M, Welter H, Kliem H, Meyer HH, Schams D, Amselgruber W. 2008. Effect of the luteinising hormone surge on regulation of vascular endothelial growth factor and extracellular matrixdegrading proteinases and their inhibitors in bovine follicles. Reproduction, Fertility and Development. 20(2):258-268. https://doi.org/10.1071/RD07125

  11. BOGACKI M, Kotwica J. 1999. Influence of noradrenaline on progesterone synthesis and posttranslational processing of oxytocin synthesis in the bovine corpus luteum. Theriogenology. 52(1):91-102. https://doi.org/10.1016/S0093-91X(99)00112-0

  12. BURNS PD, Spitzer JC, Henricks DM. 1997. Effect of dietary energy restriction on follicular development and luteal function in nonlactating beef cows. Journal of Animal Science. 75(4):1078-1086. https://doi.org/10.2527/1997.7541078x

  13. BUTTKE TM, Sandstrom PA. 1994. Oxidative stress as a mediator of apoptosis. Immunology Today. 15(1):7-10. https://doi.org/10.1016/0167-5699(94)90018-3

  14. CARAMBULA SF, Matikainen T, Lynch MP, Flavell RA, Dias Gonçalves PB, Tilly JL, Rueda BR. 2002. Caspase-3 is a pivotal mediator of apoptosis during regression of the ovarian corpus luteum. Endocrinology. 143(4):1495-1501. https://doi.org/10.1210/ endo.143.4.8726

  15. CARROLL DJ, Grummer RR, Mao FC. 1992. Progesterone production by cultured luteal cells in the presence of bovine low-and high-density lipoproteins purified by heparin affinity chromatography. Journal of Animal Science. 70(8):2516-2526. https://doi.org/10.2527/1992.7082516x

  16. CHO Y, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FKM. 2009. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 137(6):1112-1123. https://doi.org/10.1016/j.cell.2009.05.037

  17. CHRISTOFFERSON DE, Yuan J. 2010. Necroptosis as an alternative form of programmed cell death. Current Opinion in Cell Biology. 22(2):263-268. https://doi.org/10.1016/j.ceb.2009.12.003

  18. CLARK DM, Lampert IA. 1990. Apoptosis is a common histopathological finding in myelodysplasia: the correlate of ineffective haematopoiesis. Leukemia & Lymphoma. 2(6):415-418. https://doi.org/10.3109/10428199009069295

  19. CLARKE PG. 1990. Developmental cell death: morphological diversity and multiple mechanisms. Anatomy and Embriology.181(3):195-213. https://doi.org/10.1007/BF00174615 COHEN GM. 1997. Caspases: the executioners of apoptosis. Biochemestry Journal. 326(1):1-16. DOI: 10.1042/bj3260001

  20. COMPTON MM. 1992. A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer and Metastasis Reviews. 11(2):105-119. https://doi.org/10.1007/BF00048058

  21. CONNOLLY DT. 1991. Vascular permeability factor: a unique regulator of blood vessel function. Journal of Cellular Biochemistry. 47(3):219-223. https://doi.org/10.1002/jcb.240470306

  22. CORTÉS-VIDAURI Z, Aréchiga-Flores C, Rincón-Delgado M, Rochín-Berumen F, López-Carlos M, Flores- Flores G. 2018. Revisión: El Ciclo Reproductivo de la Yegua. Abanico Veterinario. 8(3):14-41. ISSN-e 2007- 428X, ISSN 2448-6132. http://dx.doi.org/10.21929/abavet2018.83.1

  23. DECLERCQ W, Berghe TV, Vandenabeele P. 2009. RIP kinases at the crossroads of cell death and survival. Cell. 138(2):229-232. https://doi.org/10.1016/j.cell.2009.07.006

  24. DEGTEREV A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J. 2008. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chemical Biology. 4(5):313-321 https://doi.org/10.1038/nchembio.83

  25. DÍAZ FJ, Anderson LE, Wu YL, Rabot A, Tsai SJ, Wiltbank MC. 2002. Regulation of progesterone and prostaglandin F2α production in the CL. Molecular and Cellular Endocrinology. 191(1): 65-80. https://doi.org/10.1016/S0303-7207(02)00056-4

  26. DURAS M, Mlynarczuk J, Kotwica J. 2005. Non-genomic effect of steroids on oxytocin-stimulated intracellular mobilization of calcium and on prostaglandin F2α and E2 secretion from bovine endometrial cells. Prostaglandins and Other Lipid Mediators. 76(1-4):105-116. https://doi.org/10.1016/j.prostaglandins.2005.02.001

  27. FERRARA N, Davis-Smyth T. 1997. The biology of vascular endothelial growth factor. Endocrine Reviews. 18(1):4-25. https://doi.org/10.1210/edrv.18.1.0287

  28. FESTJENS N, Berghe TV, Cornelis S, Vandenabeele P. 2007. RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death and Differentiation. 14(3):400-410. https://doi.org/10.1038/sj.cdd.4402085

  29. FREITAS-DE-MELO A, Ungerfeld R. 2016. Progesterona y respuesta de estrés: mecanismos de acción y sus repercusiones en rumiantes domésticos. Revisión. Revista Mexicana de Ciencias Pecuarias. 7(2):185- 199. Versión On-line ISSN 2448-6698. Versión impresa ISSN 2007-1124. http://www.scielo.org.mx/scielo.php?script=sci _arttext&pid=S2007-11242016000200185 &lng=es&nrm=iso>

  30. FRIDOVICH I. 1995. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry. 64(1):97-112. https://doi.org/10.1146/annurev.bi.64. 070195.000525

  31. FRIEDMAN A, Weiss S, Levy N, Meidan R. 2000. Role of tumor necrosis factor α and its type I receptor in luteal regression: induction of programmed cell death in bovine corpus luteum-derived endothelial cells. Biology of Reproduction. 63(6):1905-1912. https://doi.org/10.1095/biolreprod63.6.1905.

  32. GINTHER OJ, Silva LA, Araujo RR, Beg MA. 2007. Temporal associations among pulses of 13, 14-dihydro- 15-keto-PGF2alpha, luteal blood flow, and luteolysis in cattle. Biology of Reproduction. 76(3):506-513. https://doi.org/10.1095/biolreprod.106.057653

  33. GIRSH E, Greber Y, Meidan R. 1995. Luteotrophic and luteolytic interactions between bovine small and large luteal-like cells and endothelial cells. Biology of Reproduction. 52(4):954-962. https://doi.org/10.1095/biolreprod52.4.954

  34. GIRSH E, Milvae RA, Wang W, Meidan R. 1996a. Effect of endothelin-1 on bovine luteal cell function: role in prostaglandin F2alpha-induced antisteroidogenic action. Endocrinology. 137(4):1306-1312. https://doi.org/10.1210/en.137.4.1306

  35. GIRSH E, Wang W, Mamluk R, Arditi F. Friedman A. Milvae RA, Meidan R. 1996b. Regulation of endothelin- 1 expression in the bovine corpus luteum: elevation by prostaglandin F 2 alpha. Endocrinology. 137(12):5191-5196. https://doi.org/10.1210/endo.137.12.8940334

  36. GOSSELIN N, Price CA, Roy R, Carriere PD. 2000. Decreased LH pulsatility during initiation of gonadotropin superovulation treatment in the cow: evidence for negative feedback other than estradiol and progesterone. Theriogenology. 54(4): 507-521. https://doi.org/10.1016/S0093-691X(00)00366-6

  37. GREGSON E, Webb R, Sheldrick EL, Campbell BK, Man GE, Liddell S, Sinclair KD. 2016. Molecular determinants of a competent bovine corpus luteum: first vs final wave dominant follicles. Reproduction. REP-15-0415 Online ISSN: 1741-7899. Print ISSN: 1470-1626.

  38. GRUMMER RR, Carroll DJ. 1988. A Review of lipoprotein cholesterol metabolism: importance to ovarian function. Journal of Animal Science. 66(12):3160-3173. https://doi.org/10.2527/jas1988.66123160x

  39. GRUMER RR, Carroll DJ. 1991. Effects of dietary fat on metabolic disorders and reproductive performance of dairy cattle. Journal of Animal Science. 69(9):3838-3852. https://doi.org/10.2527/1991.6993838x

  40. GUILBAULT LA, Thatcher WW, Foster DB, Caton D. 1984. Relationship of 15-Keto-1 3, 1 4-Dihydro- Prostaglandin F2α concentrations in peripheral plasma with local uterine production of F series prostaglandins and changes in uterine blood flow during the early postpartum period of cattle. Biology of Reproduction. 31(5):870-878. https://doi.org/10.1095/biolreprod31.5.870.

  41. HAM EA, Cirillo VJ, Zanetti ME, Kuehl FA. 1975. Estrogen-directed synthesis of specific prostaglandins in uterus. Proceedings of the National Academy of Sciences. 72(4):1420-1424. https://doi.org/10.1073/pnas.72.4.1420

  42. HANSEL W, Concannon PW, Lukaszewska J. 1973. Corpora lutea of the large domestic animals. Biology of Reproduction. 8(2):222-245. ISSN 0006-3363; EISSN 1529-7268

  43. HANSEL W. 1975. “Luteal regression in domestic animals”. En: Annales de Biologie Animale Biochimie Biophysique. 15(2):147-160. EDP Sciences. ISSN: 0003-388X.

  44. HANSEL W, Blair RM. 1996. Bovine corpus luteum: a historic overview and implications for future research. Theriogenology. 45(7):1267-1294. https://doi.org/10.1016/0093691X(96)00098-2

  45. HAYASHI K, Acosta TJ, Berisha B, Kobayashi S, Ohhtani M, Schams D, Miyamoto A. 2003. Changes in prostaglandin secretion by the regressing bovine corpus luteum. Prostaglandin Other Lipid Mediators. 70:339-349. https://doi.org/10.1016/S0090-6980(02)00148-X

  46. HAYASHI K, Miyamoto A. 1999. Angiotensin II interacts with prostaglandin F2α and endothelin-1 as a local luteolytic factor in the bovine corpus luteum in vitro. Biology of Reproduction. 60(5):1104-1109. https://doi.org/10.1095/biolreprod60.5.1104

  47. HAYASHI K, Miyamoto A, Berisha B, Kosmann MR, Okuda K., Schams D. 2000. Regulation of angiotensin II production and angiotensin receptors in microvascular endothelial cells from bovine corpus luteum. Biology of Reproduction. 62(1):162-167. https://doi.org/10.1095/biolreprod62.1.162

  48. HE S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X. 2009. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell. 137(6):1100-1111. https://doi.org/10.1016/j.cell.2009.05.021

  49. HITOMI J, Christofferson DE, Ng A., Yao J, Degterev A, Xavier RJ, Yuan J. 2008. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell. 135(7):1311-1323. https://doi.org/10.1016/j.cell.2008.10.044

  50. HOJO T, Al-Zi'Abi MO, Skarzynski DJ, Acosta TJ, Okuda K. 2009. Changes in the vasculature of bovine corpus luteum during the estrous cycle and prostaglandin F2α-induced luteolysis. Journal of Reproduction and Development. 55(5):512-517. https://doi.org/10.1262/jrd.20257

  51. HOJO T, Oda A, Lee SH, Acosta TJ, Okuda K. 2010. Effects of tumor necrosis factor α and Interferon on the viability and mRNA expression of TNF receptor type I in endothelial cells from the bovine corpus luteum. Journal of Reproduction and Development. 56(5):515-519. https://doi.org/10.1262/jrd.10-056T

  52. HOJO T, Siemieniuch MJ, Lukasik K, Piotrowska-Tomala KK, Jonczyk AW, Okuda K, Skarzynski DJ. 2016. Programmed necrosis-a new mechanism of steroidogenic luteal cell death and elimination during luteolysis in cows. Scientific Reports. 6:38211. https://doi.org/10.1038/srep38211

  53. HOLLER N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J. 2000. Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nature Immunology. 1(6):489-495. https://doi.org/10.1038/82732

  54. HOLT JA. 1989. Regulation of progesterone production in the rabbit corpus luteum. Biology of Reproduction. 40(2):201-208. https://doi.org/10.1095/biolreprod40.2. 201

  55. IRELAND JJ, Roche JF. 1982. Effect of progesterone on basal LH and episodic LH and FSH secretion in heifers. Reproduction. 64(2): 295-302. https://doi.org/10.1530/jrf.0. 0640295

  56. JUENGEL JL, Garverick HA, Johnson AL, Youngquist RS, Smith MF. 1993. Apoptosis during luteal regression in cattle. Endocrinology. 132(1):249-254. https://doi.org/10. 1210/en.132.1.249

  57. KINDAHL H, Edqvist LE, Larsson K, Malmqvist A. 1982. Influence of prostaglandins on ovarian function post partum. Current Topics in Veterinary Medicine and Animal Science. http://www.nal.usda.gov/

  58. KORZEKWA AJ, Jaroszewski JJ, Bogacki M, Deptula KM, Maslanka TS, Acosta TJ, Okuda K, Skarzynski DJ. 2004. Effects of prostaglandin F2α and nitric oxide on the secretory function of bovine luteal cells. Journal of Reproduction and Development. 50(4):411-417. https://doi.org/10.1262/jrd.50.411

  59. KORZEKWA AJ, Lukasik K, Pilawski W, Piotrowska-Tomala KK, Jaroszewski JJ, Yoshioka S, Okuda K, Skarzynski DJ. 2014. Influence of prostaglandin F2α analogues on the secretory function of bovine luteal cells and ovarian arterial contractility in vitro. The Veterinary Journal. 199(1):131-137. https://doi.org/10.1016/j.tvjl.2013.09.021

  60. KORZEKWA AJ, Murankami S, Woclawek-Potocka I, Bah MM, Pilawski W, Okuda K, Skarzynski DJ. 2006. Nitric oxide induces apoptosis in bovine luteal cells. Journal of Reproduction and Development. 52(3):353- 361. https://doi.org/10.1262/jrd.17092

  61. KORZEKWA A, Woclawek-Potocka I, Okuda K., Acosta TJ, Skarzynski DJ. 2007. Nitric oxide in bovine corpus luteum: possible mechanisms of action in luteolysis. Animal Science Journal. 78(3):233-242. https://doi.org/10.1111/j.1740-0929.2007.00430.x

  62. KOTWICA J, Bogacki M, Rekawiecki R. 2002. Neural regulation of the bovine corpus luteum. Domestic Animal Endocrinology. 23(1-2):299-308. https://doi.org/10.1016/S0739-7240(02)00165-0

  63. KOTWICA J, Rekawiecki R, Duras M. 2004. Stimulatory influence of progesterone on its own synthesis in bovine corpus luteum. Bulletin-Veterinary Institute in Pulawy. 48(2):139-146. ISSN 2450-7393. eISSN 2450-8608

  64. KOWALCZYK-ZIEBA I, Boruszewska D, Sinderewicz E, Skarzynski DJ, Woclawek-Potocka I. 2014. Influence of lysophosphatidic acid on nitric oxide-induced luteolysis in steroidogenic luteal cells in cows. Biology of Reproduction. 90(1):p17, 1-11. https://doi.org/10.1095/biolreprod.113.113357

  65. KUMAGAI A, Yoshioka S, Sakumoto R, Okuda K. 2014. Auto‐amplification system for prostaglandin F2α in bovine corpus luteum. Molecular Reproduction and Development. 81(7):646-654. https://doi.org/10.1002/mrd.22332

  66. LAO F, Li W, Han D, Liu Y, Zhao Y, Chen C. 2009. Fullerene derivatives protect endothelial cells against NO-induced damage. Nanotechnology. 20(22):225103. https://doi.org/10.1088/0957-4484/20/22/225103

  67. LEE S, Acosta TJ, Nakagawa Y, Okuda K. 2010. Role of nitric oxide in the regulation of superoxide dismutase and prostaglandin F2α production in bovine luteal endothelial cells. Journal of Reproduction and Development. 56(4):454-459. https://doi.org/10.1262/jrd.10-013K

  68. LEE SH, Acosta TJ, Yoshioka S, Okuda K. 2009. Prostaglandin F2α regulates nitric oxide generating system in bovine luteal endothelial cells. Journal of Reproduction and Development. 55(4):418-424. https://doi.org/10.1262/jrd.20205

  69. LEI ZM, Chegini N, Rao CV. 1991. Quantitative cell composition of human and bovine corpora lutea from various reproductive states. Biology of Reproduction. 44(6):1148-1156. https://doi.org/10.1095/biolreprod44.6.1148

  70. LINDELL JO, Kindahl H, Jansson L, Edqvist LE. 1982. Post-partum release of prostaglandin F2α and uterine involution in the cow. Theriogenology. 17(3):237-245. https://doi.org/10.1016/0093-691X(82)90085-1

  71. MCCANN SM, Mastronardi C, de Laurentis A, Tettori V. 2005. Nitric oxide theory of aging revisited. Annals of New York Academy Sciences. 1057:64-84. https://doi.org/10.1196/annals.1356.064

  72. MCCRACKEN JA. 1981. The identification of prostaglandin F2α as a uterine luteolytic hormone and the hormonal control of its synthesis. Acta Vet Scand suppl. 77:71-88. NII Article ID (NAID) 10026621725

  73. MCCRACKEN JA, Custer EE, Lamsa JC. 1999. Luteolysis: a neuroendocrine mediated event. Physiological Reviews. 79(2):263-323. https://doi.org/10.1152/physrev.1999.79. 2.263

  74. MEIDAN R, Milvae RA, Weiss S, Levy N, Friedman A. 1999. Intraovarian regulation of luteolysis. Journal of Reproduction and Fertility suppl. 54:217-228. (PMID:10692857).

  75. MISHRA GK, Patra MK, Sheikh PA, Teeli AS, Kharayat NS, Karikalan M, Bag S, Singh SK, Das GK, Narayanan K, Kumar H. 2018. Functional characterization of corpus luteum and its association with peripheral progesterone profile at different stages of estrous cycle in the buffalo. Journal of Animal Research. 8(3):507-512. http://dx.doi.org/10.30954/2277-940X.06.2018.28

  76. MIYAMOTO A, Kobayashi S, Arata S, Ohtani M, Fukui Y, Schams D. 1997. Prostaglandin F2α promotes the inhibitory action of endothelin-1 on the bovine luteal function in vitro. Journal of Endocrinology. 152(2):R7-R11. https://doi.org/10.1677/joe.0.152R007

  77. MIYAMOTO A, Lützow Hv, Schams D. 1993. Acute actions of prostaglandin F2α, E2, and 12 in microdialyzed bovine corpus luteum in vitro. Biology of Reproduction. 49(2):423-430. https://doi.org/10.1095/biolreprod49.2.423

  78. MIYAMOTO A, Shirasuna K. 2009. Luteolysis in the cow: a novel concept of vasoactive molecules. Animal Reproduction. 6(1):47-59. ISSN 1806-9614.

  79. MIYAMOTO A, Shirasuna K, Sasahara K. 2009. Local regulation of corpus luteum development and regression in the cow: impact of angiogenic and vasoactive factors. Domestic Animal Endocrinology. 37(3): 159-169. https://doi.org/10. 1016/j.domaniend.2009.04.005

  80. MIYAMOTO A, Shirasuna K, Wijayagunawardane MPB, Watanabe S, Hayashi M, Yamamoto D, Matsui M, Acosta TJ. 2005. Blood flow: a key regulatory component of corpus luteum function in the cow. Domestic Animal Endocrinology. 29(2):329-339. https://doi.org/10.1016/j.domaniend.2005.03.011

  81. MONCADA S. 1991. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacological Reviews. 43:109-142. NII Article ID (NAID) 10009922604

  82. MOUJALLED DM, Cook WD, Okamoto T, Murphy J, Lawlor KE, Vince JE, Daux & Vaux DL. 2013. TNF can activate RIPK3 and caused programmed necrosis in the absence of RIPK1. Cell Death Diseases. 4:e465. PMID: 23328672

  83. MUZIO M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. 1998. An induced proximity model for caspase-8 activation. Journal of Biological Chemistry. 273(5):2926-2930. DOI: 10.1074/jbc.273.5.2926

  84. NAGATA S. 1997. Apoptosis by death factor. Cell. 88(3):355-365. https://doi.org/10.1016/S0092- 8674(00)81874-7

  85. NAKAMURA T, Sakamoto K. 2001. Reactive oxygen species up-regulates cyclooxygenase-2, p53, and Bax mRNA expression in bovine luteal cells. Biochemical and Biophysical Research Communications. 284(1):203-210. https://doi.org/10.1006/bbrc.2001.4927

  86. NEUVIANS TP, Berisha B, Schams D. 2004a. Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) expression during induced luteolysis in the bovine corpus luteum. Molecular Reproduction and Development. 67:389–395. https://doi.org/10.1002/mrd.20032

  87. NEUVIANS TP, Schams D, Berisha B, Pfaffl MW. 2004b. Involvementof pro-inflammatory cytokines, mediators of inflammation, and basic fibroblast growth factor in prostaglandin F2alpha-induced luteolysis in bovine corpus luteum. Biology of Reproduction. 70(2):473–480. https://doi.org/10. 1095/biolreprod.103.016154

  88. NISWENDER GD. 2002. Molecular control of luteal secretion of progesterone. Reproduction. 123(3):333- 339. ISSN: 1741-7899

  89. NISWENDER GD, Juengel JL., McGuire WJ, Belfiore CJ, Wiltbank MC. 1994. Luteal function: the estrous cycle and early pregnancy. Biology of Reproduction. 50(2):239-247. https://doi.org/10.1095/biolreprod50.2.239

  90. NISWENDER GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. 2000. Mechanisms controlling the function and life span of the corpus luteum. Physiological Reviews. 80 (1):1-29. https://doi.org/10.1152/physrev.2000.80.1.1

  91. NISWENDER GD., Nett TM. 1994. “Corpus luteum and its control in infraprimate species”. En: Knobil E. and Neill JD. The Physiology of Reproduction. 781–816 p. Reven Press, New York, NY. NII Article ID (NAID) 10024940098

  92. NISWENDER GD, Reimers TJ, Diekman MA., Nett, TM. 1976. Blood flow: a mediator of ovarian function. Biology of Reproduction. 14(1):64-81. https://doi.org/10.1095/biolreprod14.1.64

  93. NISWENDER GD, Schwall RH, Fitz TA, Farin CE, Sawyer HR. 1985. Regulation of luteal function in domestic ruminants: new concepts. En Proceedings of the 1984 Laurentian Hormone Conference. Recent Progress in Hormone Research. 41:101-151. https://doi.org/10.1016/B978-0-12-571141-8.50007-X

  94. OKUDA K, Korzekwa A, Shibaya M, Murakami S, Nishimura R, Tsubouchi M, Woclawek-Potocka I, Skarzynski DJ. 2004. Progesterone is a suppressor of apoptosis en bovine luteal cells. Biology of Reproduction. 771:2065-2071. https://doi.org/10.1095/biolreprod.104.028076

  95. O’SHEA JD, Rodgers RJ, D’Occhio MJ. 1989. Cellular composition of the cyclic corpus luteum of the cow. Journal of Reproduction and Fertility. 85(2):483-487. https://doi.org/10.1530/jrf.0.0850483

  96. PARK SJ, Kim JH, Kim TS, Lee SR, Park JW, Lee S, Kim JM, Lee DS. 2017. Peroxiredoxin 2 regulates PGF2α-induced corpus luteum regression in mice by inhibiting ROS-dependent JNK activation. Free Radical Biology and Medicine. 108:44-55. https://doi.org/10.1016/j.freeradbiomed.2017.03.013

  97. PATE JL. 1994. Cellular components involved in luteolysis. Journal of Animal Science. 72(7):1884-1890. https://doi.org/10.2527/1994.7271884x

  98. PENNY LA, Armstrong D, Bramley TA, Webb R, Collins RA., Watson ED. 1999. Immune cells and cytokine production in the bovine corpus luteum throughout the oestrous cycle and after induced luteolysis. Journal of Reproduction and Fertility. 115(1):87-96. https://doi.org/10.1530/jrf.0.1150087

  99. PETROFF MG, Petroff BK, Plate JL. 2001. Mechanisms of cytokine-induced death of cultured bovine luteal cells. Reproduction. 121(5):753-760. Online ISSN: 1741-7899. Print ISSN: 1470-1626.

  100. RABIEE AR, Lean IJ, Gooden JM, Miller BG. 1999. Relationships among metabolites influencing ovarian function in the dairy cow. Journal of Dairy Science. 82(1):39-44. https://doi.org/10.3168/jds.S0022- 0302(99)75206-9

  101. REKAWIECKI R, Nowik M, Kotwica J. 2005. Stimulatory effect of LH, PGE2 and progesterone on StAR protein, cytochrome P540 cholesterol side chain cleavage and 3β-hydroxysteroid dehydrogenase gene expression in bovine luteal cells. Prostaglandins and Other Lipid Mediators. 78(1-4):169-184. https://doi.org/10.1016/j.prostaglandins.2005.06.009

  102. REYNOLDS LP, Redmer DA. 1999. Growth and development of the corpus luteum. Journal of Reproduction and Fertility suppl. 54:181-191. PMID: 10692854. https://europepmc.org/oai.cgi?verb=ListRecords&from=2007-1001&metadataPrefix=pmc

  103. RODGERS RJ, Mitchell MD, Simpson ER. 1988. Secretion of progesterone and prostaglandins by cells of bovine corpora lutea from three stages of the luteal phase. Journal of Endocrinology. 118(1):121-126. https://doi.org/10.1677/joe.0.1180121

  104. ROTHSTEIN JD, Bristol LA, Hosler B, Brown RH, Kuncl RW. 1994. Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proceedings of the National Academy of Sciences USA. 91(10):4155-4159. https://doi.org/10.1073/pnas.91.10.4155

  105. RUEDA BR, Hamernik DL, Hoyer PB, Tilly JL. 1997a. “Potential regulators of physiological cell death in the corpus luteum”. En: Cell Death in Reproductive Physiology 161-181 p. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1944-6_14

  106. RUEDA BR, Tilly KI, Botros IW, Jolly PD, Hansen TR, Hoyer PB, Tilly JL. 1997b. Increased bax and interleukin-1β-converting enzyme messenger ribonucleic acid levels coincide with apoptosis in the bovine corpus luteum during structural regression. Biology of Reproduction. 56(1):186-193. https://doi.org/10.1095/biolreprod56.1.186

  107. RUEDA BR, Tilly KI, Hansen TR, Hoyer PB, Tilly JL. 1995. Expression of superoxide dismutase, catalase and glutathione peroxidase in the bovine corpus luteum: evidence supporting a role for oxidative stress in luteolysis. Endocrine. 3(3):227-232. https://doi.org/10.1007/BF02994448

  108. SAKUMOTO R, Berisha B, Kawate N, Schams D, Okuda K. 2000. Tumor necrosis factor-α and its receptor in bovine corpus luteum throughout the estrous cycle. Biology of Reproduction. 62(1):192-199. https://doi.org/10.1095/biolreprod62.1.192

  109. SAKUMOTO R, Verehren M, Kenngott RA, Okuda K, Sinowatz F. 2011. Localization of gene and protein expression of tumor necrosis factor-α and tumor necrosis factor receptor types I and II in the bovine corpus luteum during the estrous cycle. Journal of Animal Sciences. 89:3040-3047. DOI:10.2527/jas.2010-3479

  110. SAWADA M, Carlson JC. 1996. Intracellular regulation of progesterone secretion by the superoxide radical in the rat corpus luteum. Endocrinology. 137(5):1580-1584. https://doi.org/10.1210/en.137.5.1580

  111. SCAFFIDI C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME. 1998. Two CD95 (APO-1/Fas) signaling pathways. EMBO Journal. 17:1675-1687. DOI 10.1093/emboj/17.6.1675

  112. SCHAMS D, Berisha B. 2004. Regulation of corpus luteum function in cattle--an overview. Reproduction in Domestic Animals. 39(4):241-51. DOI: 10.1111/j.1439-0531.2004.00509.x

  113. SESSA WC. 1994. The nitric oxide synthase family of proteins. Journal of Vascular Research. 31:131-143. DOI.org/10.1159/000159039.

  114. SHEMESH M, Hansel W. 1975. Stimulation of prostaglandin synthesis in bovine ovarian tissues by arachidonic acid and luteinizing hormone. Biology of Reproduction. 13(4):448-452. https://doi.org/10.1095/biolreprod13.4.448

  115. SHEMESH M, Hansel W. 1975. Arachidonic acid and bovine corpus luteum function. Proceedings of the Society for Experimental Biology and Medicine. 148(1):243-246. https://doi.org/10.3181%2F00379727- 148-38514

  116. SHIRASUNA K. 2010. Nitric oxide and luteal blood flow in the luteolytic cascade in the cow. Journal of Reproduction and Development. 56(1):9-14. https://doi.org/10.1262/jrd.09-206E

  117. SHIRASUNA K, Nitta A, Sineenard J, Shimizu T, Bollwein H, Miyamoto A. 2012. Vascular and immune regulation of corpus luteum development, maintenance, and regression in the cow. Domestic Animal Endocrinology 43(2):198-211. https://doi.org/10.1016/ j.domaniend.2012.03.007

  118. SHIRASUNA K, Shimizu T, Sayama K, Asahi T, Sasaki M, Berisha B, Schams D, Miyamoto A. 2008a. Expression and localization of apelin and its receptor APJ in the bovine corpus luteum during the estrous cycle and prostaglandin F2α-induced luteolysis. Reproduction. 135(4):519-525. https://doi.org/10.1530/REP-07-0409

  119. SHIRASUNA K, Watanabe S, Asahi T, Wijayagunawardane MPB, Sasahara K, Jiang C, Matsui M, Sasaki M, Shimizu T, Davis JS, Miyamoto A. 2008b. Prostaglandin F2α increases endothelial nitric oxide synthase in the periphery of the bovine corpus luteum: the possible regulation of blood flow at an early stage of luteolysis. Reproduction. 135(4):527-539. https://doi.org/10.1530/REP-07-0496

  120. SHIRASUNA K, Yamamoto D, Morota K, Shimizu T, Matsui M., Miyamoto A. 2008c. Prostaglandin F2α stimulates endothelial nitric oxide synthase depending on the existence of bovine granulosa cells: analysis by co‐culture system of endothelial cells, smooth mMuscle Cells and Granulosa Cells. Reproduction in Domestic Animals. 43(5):592-598. https://doi.org/10.1111/j.1439-0531.2007.00957.x

  121. SKARZYNSKI DJ, Bah MM, Deptula KM, Woclawek-Potocka I, Korzeka A, Shibaya M, Pitawski W, Okuda K. 2003a. Roles of tumor necrosis factor-α of the estrus cycle in cattle: an in vivo study. Biology of Reproduction. 69(6):1907-1913. https://doi.org/10.1095/biolreprod.103.016212

  122. SKARZYNSKI DJ, Jaroszewski JJ, Bah MM, Deptula KM, Barszczewska B, Gawronska B, Hansel W. 2003b. Administration of a nitric oxide synthase inhibitor counteracts prostaglandin F2-induced luteolysis in cattle. Biology of Reproduction. 68(5):1674-1681. https://doi.org/10.1095/biolreprod.102.008573

  123. SKARZYNSKI DJ, Jaroszewski JJ, Okuda K. 2005. Role of tumor necrosis factor-α and nitric oxide in luteolysis in cattle. Domestic Animal Endocrinology. 29(2):340-346. https://doi.org/10.1016/j.domaniend.2005.02.005

  124. SKARZYNSKI DJ, Kobayashi S, Okuda K. 2000a. Influence of nitric oxide and noradrenaline on prostaglandin F2α-induced oxytocin secretion and intracellular calcium mobilization in cultured bovine luteal cells. Biology of Reproduction. 63(4):1000-1005. https://doi.org/10.1095/biolreprod63.4.1000

  125. SKARZYNSKI, DJ, Miyamoto Y, Okuda K, 2000b. Production of prostaglandin F2α by cultured bovine endometrial cells in response to tumor necrosis factor α: cell type specificity and intracellular mechanisms. Biology of Reproduction. 62(5):1116-1120. https://doi.org/10.1095/biolreprod62.5.1116

  126. SKARZYNSKI DJ, Okuda K. 1999. Sensitivity of bovine corpora lutea to prostaglandin F2α is dependent on progesterone, oxytocin, and prostaglandins. Biology of Reproduction. 60(6):1292-1298. https://doi.org/10.1095/biolreprod60.6.1292

  127. SKARZYNSKI DJ, Okuda K. 2000. Different actions of noradrenaline and nitric oxide on the output of prostaglandins and progesterone in cultured bovine luteal cells. Prostaglandins and Other Lipid Mediators. 60(1-3):35-47. https://doi.org/10.1016/S0090-6980(99)00046-5

  128. STEVENSON JS, Britt JH. 1979. Relationships among luteinizing hormone, estradiol, progesterone, glucocorticoids, milk yield, body weight and postpartum overian activity in Holstein cows. Journal of Animal Science. 48(3):570-577. https://doi.org/10.2527 /jas1979.483570x

  129. STIRLING D, Magness RR, Stone R, Waterman MR, Simpson ER.1990. Angiotensin II inhibits luteinizing hormone-stimulated cholesterol side chain cleavage expression and stimulates basic fibroblast growth factor expression in bovine luteal cells in primary culture. Journal of Biological Chemistry. 265(1):5-8. Online ISSN 1083-351X.

  130. STOCCO DM. 1997. A StAR search: implications in controlling steroidogenesis. Biology of Reproduction. 56(2):328-336. https://doi.org/10.1095/biolreprod56.2.328

  131. STOCCO DM. 2001. StAR protein and the regulation of steroid hormone biosynthesis. Annual Review of Physiology. 63(1):193-213. https://doi.org/10.1146/annurev.physiol.63.1.193

  132. STOCCO DM, Ascoli M.1993. The use of genetic manipulation of MA-10 Leydig tumor cells to demonstrate the role of mitochondrial proteins in the acute regulation of steroidogenesis. Endocrinology. 132(3):959-967. https://doi.org/10.1210/en.132.3.959

  133. STOCCO C, Telleria C, Gibori G. 2007. The molecular control of corpus luteum formation, function, and regression. Endocrine Reviews. 28(1):117-149. https://doi.org/10.1210/er. 2006-0022

  134. SUHARA T, Fukuo K, Sugimoto T, Morimoto S, Nakahashi T, Hata S, Shimizu M, Ogihara T. 1998. Hydrogen peroxide induces up-regulation of Fas in human endothelial cell. Journal of Immunology. 160(8):4042-4047. Print ISSN 0022-1767; Online ISSN 1550-6606.

  135. SZCZEPAŃSKA, M., Koźlik, J., Skrzypczak, J., & Mikołajczyk, M. 2003. Oxidative stress may be a piece in the endometriosis puzzle. Fertility and Sterility. 79(6):1288-1293. https://doi.org/10.1016/S0015- 0282(03)00266-8

  136. TANIGUCHI H, Yokomizo Y, Okuda K. 2002. Fas-Fas ligand system mediates luteal cell death in bovine corpus luteum. Biology of Reproduction. 66(3):754-759. https://doi.org/10.1095/biolreprod66.3.754

  137. THORNEBERRY NA, Lazebnik Y. 1998. Caspases: enemies within. Science. 281(5381):1312-1316. DOI:10.1126/science.281.5381.1312 TILLY JL. 1996. Apoptosis and ovarian function. Reviews of Reproduction. 1(3):162-172. Online ISSN: 1741-7899; Print ISSN: 1470-1626.

  138. VANDENABEELE P, Galluzzi L, Berghe TV, Kroemer G. 2010. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Reviews Molecular Cell Biology. 11(10):700-714. https://doi.org/10.1038/nrm2970

  139. VANLANGENAKKER N, Berghe TV, Vandenabeele P. 2012. Many stimuli pull the necrotic trigger, an overview. Cell Death and Differentiation. 19(1):75-86. https://doi.org/10.1038/cdd.2011.164

  140. VAN LANGENDONCKT A, Casanas-Roux F, Donnez J. 2002. Oxidative stress and peritoneal endometriosis. Fertility and Sterility. 77(5):861-870. https://doi.org/10.1016/S0015-0282(02)02959-X

  141. WILTBANK MC, Shiao TF, Bergfelt DR, Ginther OJ. 1995. Prostaglandin F2α receptors in the early bovine corpus luteum. Biology of Reproduction. 52(1): 74-78. https://doi.org/10.1095/biolreprod52.1.74

  142. WILTBANK MC, Gümen A, Sartori R. 2002. Physiological classification of anovulatory conditions in cattle. Theriogenology. 57(1):21-52. https://doi.org/10.1016/S0093-691X(01)00656-2

  143. WILTBANK MC, Souza AH, Carvalho PD, Cunha AP. 2014. Physiological and practical effects of progesterone on reproduction in dairy cattle. New Science-New Practices International Cow Fertility Conference. Westport, Ireland. Pp.70-81. https://doi.org/10.1017/S1751731114000585

  144. YOUNG IS, Woodside JV. 2001. Antioxidants in health and disease. Journal of Clinical Pathology. 54(3):176-186. http://dx.doi.org/10.1136/jcp.54.3.176

  145. YOUNG JM, McNeilly AS. 2010. Theca: the forgotten cell of the ovarian follicle. Reproduction. 140(4):489- 504. https://doi.org/10.1530/REP-10-0094

  146. ZHENG J, Redmer DA, Reynolds LP. 1993. Vascular development and heparin-binding growth factors in the bovine corpus luteum at several stages of the estrous cycle. Biology of Reproduction. 49(6):1177-1189. https://doi.org/10.1095/biolreprod49.6.1177

  147. ZERANI M, Catone G, Betti G, Parillo F. 2013. Immunopresence and functional activity of prostaglandinendoperoxidase synthases and nitric oxide synthase in bovine corpora lutea during diestrus. Folia Morphological. 72(1): 36-40. DOI: 10.5603/FM.2013.0006

  148. ZHANG DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J. 2009. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. DOI: 10.1126/science.1172308.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

AbanicoVet. 2019;9