medigraphic.com
SPANISH

Revista Cubana de Informática Médica

ISSN 1684-1859 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 2

<< Back Next >>

Revista Cubana de Informática Médica 2019; 11 (2)

Relationship of age with spectral components of noise-free realizations of photoplethysmographic signals: outcomes of a nonlinear identification approach

Hernández CJL, Reyes MLA, González FRI
Full text How to cite this article

Language: English
References: 25
Page: 3-15
PDF size: 465.68 Kb.


Key words:

cardiovascular age, photoplethysmographic signal, nonlinear dynamics, nonlinear nonparametric regression, KCRIndex.

ABSTRACT

Background: Age-related changes in the vascular network have been widely documented, however, nonlinear identification has been poorly applied to the analysis of cardiovascular signals.
Objective: To determine the impact of age on spectral components of Noise-free realizations (NFR) obtained from photoplethysmographic signals, summarized in the Kernel Complexity Regressive Index (KCRIndex).
Methods: With 190 apparently healthy participants (9 to 89 years) from Orense, Spain, Photoplethysmographic signals were recorded during 5 minutes in supine position using Nellcor-395 pulse oximeter; signals were digitized at 1000 Hz, and furtherly submitted to nonlinear identification via a kernel nonlinear autoregressive estimator. KCRIndex is defined as the average of at least three negative slope values at the NFR log-log spectrum in the 9 to 25 Hz frequency region.
Results: KCRIndex decreased with age in a linear fashion and did not differ between genders. The regression line obtained was KCRIndex=-0.025*age+6.868 (r=-0.751).
Conclusions: KCRIndex, is strongly correlated with age, thus opening up new possibilities for cardiovascular exploration at primary health care settings and even on open field conditions.


REFERENCES

  1. West GB, Brown JH, Enquist BJ. A General Model for the Origin of Allometric Scaling Laws in Biology. Science 1997 Apr;276(5309):122-126.

  2. McMahon. Size and Shape in Biology. Elastic criteria impose limits on biological proportions, and consequently on metabolic rates. Science 1973 Mar;79(4079):1201-4.

  3. Changizi MA, Cherniak C. Modeling the Large-Scale Geometry of Human Coronary Arteries. Can. J. Physiol. Pharmacol. 2000 Aug;78(8):603-11.

  4. O'Rourke MF, Nichols WW. Aortic Diameter, Aortic Stiffness, and Wave Reflection Increase With Age and IsolatedSystolic Hypertension. Hypertension. 2005 Apr;45(4):652-8.

  5. Adji A, O’Rourke M. Disparate effects of aging on indices of arterial stiffness and wave reflection. J Am CollCardiol. 2004 Mar;43(5 Supl 2):2242-5.

  6. Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, O’Rourke MF. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation. 1983 Jul;68(1):50-8.

  7. Glasser S, Finkelstein M, Cohn JN, McVeigh GE, Bratteli CW, Morgan DJ et al. Age-Related Abnormalities in Arterial Compliance Identified by Pressure Pulse Contour Analysis: Aging and Arterial Compliance. Hypertension. 1999 Jun;33(6):1392-8.

  8. Hernández Caceres JL, Syed Hasan E. A New First-Derivative Related Index to Assess Pulse Wave Transit Time from a Photoplethysmographic Waveform: Age Dependence and Agreement with Normative Data. International Journal of Bioinformatics and Biomedical Engineering. 2015;1(3):276-83.

  9. Hernández Caceres JL. Applying the 3-element windkessel model to photoplethysmographic signals. Gender differences and age correlation. Rev cuba inform méd [Internet]. 2014 Ene-Jun [citado 2019 Mar 15];6(1):48-56. Disponible en: http://scielo.sld.cu/pdf/rcim/v6n1/rcim06114.pdf.

  10. Hernández Caceres JL. On age dependence of peripheral augmentation index. Rev Electron Biomed / Electron J Biomed [Internet]. 2013 [cited 2019 Mar 15];1:50-55. Available from: https://pdfs.semanticscholar.org/c15e/f123b13ec0dadcdca07c371e2874930c34b1.pdf?_ga=2.100675841.1218.

  11. Bogdanov IN. El físico visita al Biólogo. 1.ª edición. Moscú: MIR; 1989. 191p.

  12. McVeigh GE, Bratteli CW, Morgan DJ, Alinder CM, Glasser SP, Finkelstein SM, Cohn JN. Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance. Hypertension. 1999 Jun;33(6):1392-8.

  13. Tong H. Nonlinear Time Series: A Dynamical System Approach. UK.: Oxford University Press; 1990. 564p.

  14. Aguirre LA. A Tutorial Introduction to Nonlinear Dynamics and Chaos, Part11: Modeling and Control SBAControle&Automação. 1996 Jan-Abr;7(I):50-66 .

  15. Hernández Caceres JL, Valdés PA, Vila P. EEG spike and wave modelled by a stochastic limit cycle. Neuroreport. 1996 Sep 2;7(13):2246-50.

  16. Valdés P, Bosch J, Jiménez JC, Trujillo N, Biscay R, Morales F, et al. The statistical identification of nonlinear brain dynamics: A progress report. In: Nonlinear Dynamics and Brain Functioning. Pradhan N., Rapp P. E. And Sreenivasan (Eds.). N.Y.: Nova Science Publishers; 1999 [aprox. 22págs].

  17. Miwakeichi F, Ramirez Padron R, . Valdes Sosa PA, Ozaki T. A comparison of non-linear non-parametric models for epilepsy data. Computers in Biology and Medicine. 2001 Jan;31(1):41-57.

  18. Shi S, Tamura Y, Ozaki T. Empirical evaluation of Non-parametric autoregressive model for dynamics reconstruction and prediction. Journal of Signal Processing. 2000 Mar;4(2):185-93.

  19. Alastruey J, Parker K, Peiró J, Sherwin S. Analysing the pattern of pulse waves in arterial networks: a time-domain study. J Eng Math. 2009 Aug;64(4)331–51.

  20. Alastruey J,. Khir AW, Matthys KS, Segers P, Sherwin SJ, Verdonck PR, Parker KH, Peirao J. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements. J Biomech. 2011 Aug 11;44(12):2250–58.

  21. Giuliani A, Piccirillo G, Marigliano V, Colosimo A. A nonlinear explanation of aging induced changes inheart beat dynamics. American Journal of Physiology. – Heart. 1998;275(4): H1455-H1461.

  22. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation. 2003;107(1):139–146.

  23. Nambi V, Worthley SG. Clinical use of imaging for cardiovascular risk assessment, Chapter 14. In: S.Nicholls, S. Worthley (eds) Cardiovascular Imaging for clinical practice. Sudbury: Massachussetts. 2011. p. 293-305.

  24. Barodka VM, Joshi BL, Berkowitz DE, Hogue CW, Nyhan D. Implications of Vascular Aging. AnesthAnalg. 2011 May;112(5):1048–60.

  25. Pelberg R. Cardiac CT angiography manual. N.Y.:Springer; 2007. 142 p.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Cubana de Informática Médica. 2019;11