medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2019; 22 (1)

Enzymatic epoxidation of methyl fatty acid esters of vegetable origin and their applications as an alternative to replace petroleum derivatives

Sustaita-Rodríguez A, Rocha-Gutiérrez BA, García-Triana A, Ramos-Sánchez VH, Beltrán-Piña BG, Chávez-Flores D
Full text How to cite this article

Language: Spanish
References: 109
Page: 1-17
PDF size: 1245.00 Kb.


Key words:

FAME, epoxides, enzymes, vegetable oil.

ABSTRACT

Recently, vegetable oils modification to obtain methyl esters of fatty acids (FAME) or biodiesel has emerged as an alternative for substituting petroleum derivatives, due to the environmental and health problems generated with their use. Owing to its chemical structure it is possible to epoxidize these molecules and use them directly to produce plasticizers or lubricants. However, these can also be subject to modifications for improving their properties and, at best, serve as intermediaries in polyurethanes synthesis. Since epoxide conventional production methods are potential source of contamination, the use of enzymatic catalysts has been suggested as a sustainable or "green" alternative for their preparation, since they allow obtaining products with high purity and better yields. This article presents a review of the available literature focusing on the enzymatic epoxidation of the FAMEs, as well as their main applications.


REFERENCES

  1. Allport, D.C., Gilbert, D.S. & Outterside, S.M. (2003). MDI and TDI: safety, health and the environment; a source book and practical guide. United Kingdom: Wiley.

  2. Anchal, T. M., Patel, A., Chauhan, D. D., Thomas, M. & Patel, J. V. A. (2017). Methodological review on bio-lubricats from vegetable oilbased resources. Renew. Sustain. Energy Rev., 70, 65–70. https://doi.org/10.1016/j. rser.2016.11.105

  3. Aouf, C., Durand, E., Lecomte, J., Figueroa-Ezpinoza, M.C., Dubreucq, E., Fulcranda, H. & Villenueve, P. (2014). The use of lipases as biocatalysts for the epoxidation of fatty acids and phenolic compounds. Green Chem., (16),1740–1754. https://doi.org/10.1039/ C3GC42143K

  4. Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M. & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Ind. Crops Prod., (99), 196–204. https://doi.org/10.1016/j. indcrop.2017.02.009

  5. BadischeAnilin- und Soda-Fabrik, BASF. (2013). Ficha técnicade Palatinol DPHP-I®Recuperado el 26 de noviembre de 2018, de: http://www.plasticizers.basf. com/portal/streamer?fid=277353

  6. Balat, M. (2007). Production of Biodiesel from Vegetable Oils: A Survey. Energy Sources Part Recovery Util. Environ. Eff., (29), 895–913. https://doi. org/10.1080/00908310500283359

  7. Bayrak, A., Kiralan, M., Ipek, A., Arslan, N., Cosge, B. & Khawar, K.M. (2014). Fatty Acid Compositions of Linseed (Linumusitatissimum L.) Genotypes of Different Origin Cultivated in Turkey. Biotechnol. & Biotechnol. Eq., 1832-1846. https://doi.org/10.2478/ V10133-010-0034-2

  8. Bello, E. I., Adekanbi, I. T. & Akinbode, F. O. (2016). Production and characterization of coconut (Cocus nucifera) oil and its methyl ester. Eur. J. Pure Appl. Chem., 3(3), 1-11.

  9. Bi, Y., Ding, D. & Wang, D. (2010). Low-melting-point biodiesel derived from corn oil via urea complexation. Bioresour. Technol., (101), 1220–1226. https://doi. org/10.1016/j.biortech.2009.09.036

  10. Biermann, U., Friedt, W., Lang, S., Luhs, W., Machmuller, G., Metzger, J. O., Klass, M. R. & Schafer, H. J. (2000). New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew. Chem. Int. Ed., (39), 2206–2224. https://doi. org/10.1002/1521-3773(20000703)39:13<2206::AIDANIE2206> 3.0.CO;2-P

  11. Borugadda, V. B. & Goud, V. V. (2014). Epoxidation of Castor Oil Fatty Acid Methyl Esters (COFAME) as a Lubricant base Stock Using Heterogeneous Ion-exchange Resin (IR-120) as a Catalyst. Energy Procedia, (54), 75–84. https://doi.org/10.1016/j.egypro.2014.07.249

  12. Campanella, A., Fontanini, C. & Baltanás, M. A. (2008). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chem. Eng. J., (144), 466–475. https://doi.org/10.1016/j.cej.2008.07.016

  13. Capel-Sánchez, M. C., Campos-Martin, J. M., Fierro, J. L. G., de Frutos, M. P. & Polo, A. P. (2000). Effective alkene epoxidation with dilute hydrogen peroxide on amorphous silica-supported titanium catalysts. Chem. Commun., 855–856. https://doi.org/10.1039/b000929f

  14. Carbonell-Verdu, A., García-Sanoguera, D., Jordá-Vilaplana, A., Sánchez-Nacher, L. & Balart, R. (2016). A new biobased plasticizer for poly (vinyl chloride) based on epoxidized cottonseed oil. J. Appl. Polym. Sci., (133), 43642.https://doi.org/10.1002/app.43642

  15. Chemical book (2006). Ficha técnica de methyl-9,10-12,3- diepoxystearate. Recuperado el 27 de noviembre de 2018, de: https://www.chemicalbook.com/ ChemicalProductProperty_US_CB21386734.aspx

  16. Chen, J., Liu, Z., Jiang, J., Nie, X., Zhou, Y. & Murray, R. E. (2015). A novel biobased plasticizer of epoxidized cardanol glycidyl ether: synthesis and application in soft poly (vinyl chloride) films. RSC Adv., (5), 56171– 56180. https://doi.org/10.1039/C5RA07096A

  17. Chevron Phillips Chemical Company LP. (2011). Ficha técnica de Synfluid® PAO 2 cSt. Recuperado el 26 de noviembre de 2018, de: http://www.cpchem.com/bl/ pao/en-us/tdslibrary/Synfluid%20PAO%202%20cSt. pdf

  18. Corrêa, F. A., Sutili, F. K., Miranda, L.S.M., Rodrigo, G.F.L., De Souza, O. M. A. & Leal, I. C. R. (2012). Epoxidation of oleic acid catalyzed by PSCI-Amano lipase optimized by experimental design. J. Mol. Catal. B Enzym., (81), 7–11. https://doi.org/10.1016/j. molcatb.2012.03.011

  19. Dalbey, W. E., McKee, R. H., Goyat, K. O., Biles, R. W., Murray, J. & White, R. (2014). Acute, Subchronic, and Developmental Toxicological Properties of Lubricating Oil Base Stocks. Int. J. Toxicol., (33), 110S-135S. https://doi.org/10.1177/1091581813517725

  20. Dalbey, W. E. & Biles, R. W. (2003). Respiratory Toxicology of Mineral Oils in Laboratory Animals. Appl. Occup. Environ. Hyg., (18), 921–929. https://doi. org/10.1080/10473220390237548

  21. Danov, S. M., Kazantev, O. A., Esipovich, A. L., Belousov, A. S., Rogozhin, A. E. & Kanakov, E. A. (2017). Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: a review and perspective. Catal. Sci. Technol., (7), 3659–3675. https://doi.org/10.1039/C7CY00988G

  22. Del Rio, E., Galià, M., Cádiz, V., Lligadas, G. & Ronda, J. C. (2010). Polymerization of epoxidized vegetable oil derivatives: Ionic-coordinative polymerization of methylepoxyoleate. J. Polym. Sci. Part Polym. Chem., (48), 4995–5008. https://doi.org/10.1002/pola.24297

  23. Desroches, M., Escouvois, M., Auvergne, R., Caillol, S. & Boutevin, B. (2012). From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polym. Rev., (52), 38–79. https:// doi.org/10.1080/15583724.2011.640443

  24. Dyer, J. M., Stymne, S., Green, A. G. & Carlsson, A. S. (2008). High-value oils from plants. Plant J., (54), 640–655. https://doi.org/10.1111/j.1365-313X.2008.03430.x El-Araby, R., Amin, A., El Morsi, A. K., El-Ibiari, N. N. &

  25. El-Diwani, G. I. (2017). Study on the characteristics of palm oil–biodiesel–diesel fuel blend. Egypt. J. Pet., (27), 187-194. https://doi.org/10.1016/j. ejpe.2017.03.002

  26. Fukada, H. & Kond, A. (2001). Biodiesel Fuel Production by Transesterification of Oils. Journal of Bioscience and Bioengineering, 92(5), 405-416. https://doi. org/10.1016/S1389-1723(01)80288-7

  27. Galli, F., Nucci, S., Pirola, C. & Bianchi, C. L. (2014). Epoxy methyl soyate as bio-plasticizer: two different preparation strategies. Chem. Eng. Trans., (37), 601– 606. https://doi.org/10.3303/CET1437101

  28. Gan, L. H., Ooi, K. S., Goh, S. H., Gan, L. M. & Leong, Y. C.(1995). Epoxidized esters of palm olein as plasticizers for poly(vinyl chloride). Eur. Polym. J., (31),719–724. https://doi.org/10.1016/0014-3057(95)00031-3

  29. Garcés, R., Martínez-Force, E. & Salas, J. J. (2011). Vegetable oil basestocks for lubricants. Grasas Aceites, (62), 21– 28. https://doi.org/10.3989/gya.045210

  30. Gelalcha, F. G., Bitterlich, B., Anilkumar, G., Tse, M. K. & Beller, M. (2007). Iron-Catalyzed Asymmetric Epoxidation of Aromatic Alkenes Using Hydrogen Peroxide. Angew. Chem. Int. Ed., (46), 7293–7296. https://doi.org/10.1002/anie.200701235

  31. Gerbase, A. E., Gregório, J. R., Martinelli, M., Brasil, M. C. & Mendes, A. N. F. (2002). Epoxidation of soybean oil by the methyltrioxorhenium-CH2Cl2/H2O2 catalytic biphasic system. J. Am. Oil Chem. Soc., 79, 179–181.

  32. Goud, V. V., Pradhan, N. C. & Patwardhan, A. V. (2006). Epoxidation of karanja (Pongamia glabra) oil by H2O2. J. Am. Oil Chem. Soc, (83), 635–640. https:// doi.org/10.1007/s11746-006-1250-7

  33. Gruia, A., Raba, D. N., Dumbrava, D., Moldovan, C., Bordean, D. & Mateescu, C. (2012). Fatty acids composition and oil characteristics of linseed (Linumusitatissimum L.) from Romania. J. Agroaliment. Process. Technol., (18), 136–140.

  34. Guldhe, A., Singh, B., Mutanda, T., Permaul, K. & Bux, F. (2015). Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renew. Sustain. Energy Rev., (41), 1447–1464. https://doi. org/10.1016/j.rser.2014.09.035

  35. Gülüm, M. & Bilgin, A. (2015). Density, flash point and heating value variations of corn oil biodiesel–diesel fuel blends. Fuel Process. Technol., (134), 456–464. https://doi.org/10.1016/j.fuproc.2015.02.026

  36. Guncheva, M. & Zhiryakova, D. (2011). Catalytic properties and potential applications of Bacillus lipases. J. Mol. Catal. B Enzym., (68), 1–21. https://doi.org/10.1016/j. molcatb.2010.09.002

  37. Güner, S. F., Yağcı, Y. & Erciyes, T. A. (2006). Polymers from triglyceride oils. Prog. Polym. Sci., (31),633–670. https://doi.org/10.1016/j.progpolymsci.2006.07.001

  38. Gunstone, F. D., Harwood, J. L. & Dijkstra, A. J. (2007). The lipid handbook with CD-ROM (3rd ed). Boca Raton: CRC Press. https://doi.org/10.1201/9781420009675

  39. He, W., Fang, Z., Tian, Q., Ji, D., Zhang, K. & Guo, K. (2015). Two-stage continuous flow synthesis of epoxidized fatty acid methyl esters in a micro-flow system. Chem. Eng. Process. Process Intensif., (96), 39–43. https:// doi.org/10.1016/j.cep.2015.07.028.

  40. Hilker, I., Bothe, D., Prüss, J. & Warnecke, H.-J. (2001). Chemo-enzymatic epoxidation of unsaturated plant oils. Chem. Eng. Sci., 56, 427–432. https://doi. org/10.1016/S0009-2509(00)00245-1

  41. Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E. & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev., (16), 143–169. https://doi. org/10.1016/j.rser.2011.07.143

  42. Holser, R. A. (2008). Transesterification of epoxidized soybean oil to prepare epoxy methyl esters. Ind. Crops Prod., 27, 130–132. https://doi.org/10.1016/j. indcrop.2007.06.001

  43. Hou, C. T. (2006). Monooxygenase system of Bacillus megaterium ALA2: Studies on linoleic acid epoxidation products. J. Am. Oil Chem. Soc., (83), 677–681. https://doi.org/10.1007/s11746-006-5023-0

  44. Ionescu, M. (2005). Chemistry and Technology of Polyols for Polyurethanes. United Kingdom: Smithers Rapra technology.

  45. Jiang, J.-J. & Tan, C.-S. (2012). Biodiesel production from coconut oil in supercritical methanol in the presence of cosolvent. J. Taiwan Inst. Chem. Eng., (43), 102–107. https://doi.org/10.1016/j.jtice.2011.07.004

  46. Kandula, S., Stolp, L., Grass, M., Woldt, B. & Kodali, D. (2015). Functionalization of soy fatty acid alkyl esters as bioplasticizers. J. Vinyl Addit. Technol., (23), 93– 105. https://doi.org/10.1002/vnl.21486

  47. Karmakar, G., Ghosh, P. & Sharma, B. (2017). Chemically Modifying Vegetable Oils to Prepare Green Lubricants. Lubricants, (5), 44. https://doi.org/10.3390/ lubricants5040044

  48. Kirk, R.R. & Othmer, D.F. (2007). Encyclopedia of Chemical Technology, 5th Edition. New York: Wiley.

  49. Kozlowski, R. R. & Storzum, U. (2005). Di(2-propylheptyl) phthalate: A new plasticizer choice for PVC compounders. J. Vinyl Addit. Technol., 11, 155–159. https://doi.org/10.1002/vnl.20055.

  50. Lehnen, D. R., Guzatto, R., Defferrari, D., Albornoz, L. L. & Samios, D. (2014). Solvent-free biodiesel epoxidation. Environ. Chem. Lett., (12), 335–340. https://doi. org/10.1007/s10311-013-0448-9

  51. Li, W. & Wang, X. (2015). Bio-lubricants Derived from Waste Cooking Oil with Improved Oxidation Stability and Low-temperature Properties. J. Oleo Sci., (64), 367– 374. https://doi.org/10.5650/jos.ess14235

  52. Lligadas, G., Ronda, J. C., Galià, M., Biermann, U. & Metzger, J. O. (2006). Synthesis and characterization of polyurethanes from epoxidized methyl oleate based polyether polyols as renewable resources. J. Polym. Sci. Part Polym. Chem., (44), 634–645. https://doi. org/10.1002/pola.21201

  53. Lu, H., Sun, S., Bi, Y. & Yang, G. (2012). Enzymatic epoxidation of biodiesel optimized by response surface methodology. Afr. J. Biotechnol., 11 (59), 12356- 12363. http://dx.doi.org/10.5897/AJB11.3831

  54. Lu, H., Sun, S., Bi, Y., Yang, G., Ma, R. & Yang, H. (2010). Enzymatic epoxidation of soybean oil methyl esters in the presence of free fatty acids. Eur. J. Lipid Sci. Technol., 112, 1101–1105. https://doi.org/10.1002/ ejlt.201000041

  55. Lv, N., Fang, Z., Sun, Q., Qiu ,C., & Guo, K. (2018). Epoxidation of Methyl Oleate and Subsequent Ring- Opening Catalyzed by Lipase from Candida sp. 99- 125. Eur. J. Lipid Sci. Technol., (120), 1700257. https:// doi.org/10.1002/ejlt.201700257

  56. Martini, D. S., Braga, B. A. & Samios, D. (2009). On the curing of linseed oil epoxidized methyl esters with different cyclic dicarboxylic anhydrides. Polymer, (50), 2919– 2925. https://doi.org/10.1016/j.polymer.2009.03.058

  57. Mata, T. M., Sousa, I. R. B. G., Vieira, S. S. & Caetano, N. S. (2012). Biodiesel Production from Corn Oil via Enzymatic Catalysis with Ethanol. Energy Fuels, (26), 3034–3041. https://doi.org/10.1021/ef300319f

  58. McNutt, J. & He, Q. (2016). Development of biolubricants from vegetable oils via chemical modification. J. Ind. Eng. Chem., (36), 1–12. https://doi.org/10.1016/j. jiec.2016.02.008

  59. Meeker, J. D., Sathyanarayana, S. & Swan, S. H. (2009). Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos. Trans. R. Soc. B Biol. Sci., (364), 2097–2113. https:// doi.org/10.1098/rstb.2008.0268

  60. Méndez-Sánchez, D., Ríos-Lombardía, N., Gotor, V. & Gotor-Fernández, V. (2014). Chemoenzymatic epoxidation of alkenes based on peracid formation by a Rhizomucormiehei lipase-catalyzed perhydrolysis reaction. Tetrahedron, (70), 1144–1148. https://doi. org/10.1016/j.tet.2013.12.084

  61. Milchert, E., Malarczyk, K. & Kłos, M. (2015). Technological Aspects of Chemoenzymatic epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review. Molecules, (20), 21481–21493. https://doi. org/10.3390/molecules201219778.

  62. MohdNorhisham, S. Maznee, T. I. T.N., Ain, H. N., Devi, P. P. K., Srihanum, A., Norhayati, N. M., Yeong, S. K., Hazimah, A. H., Schiffman, C. M., Sendijarevic, M., Sendijarevic, V. & Sendijarevic ,I. (2017). Soft polyurethane elastomers with adhesion properties based on palm olein and palm oil fatty acid methyl ester polyols. Int. J. Adhes. Adhe, (73), 38–44. https:// doi.org/10.1016/j.ijadhadh.2016.10.012

  63. Montero de Espinosa, L. & Meier, M. A. R. (2011). Plant oils: The perfect renewable resource for polymer science?! Eur. Polym. J., (47), 837–852.https://doi.org/10.1016/j. eurpolymj.2010.11.020

  64. Montoya, C. Cochard, B., Flori, A., Cros, D., López, R., Cuéllar, T., Espeout, S., Syaputra, I.,Villenueve, P., Pina, M., Ritter, E., Leory, T. & Billote, N. (2014). Genetic Architecture of Palm Oil Fatty Acid Composition in Cultivated Oil Palm (Elaeisguineensis Jacq.) Compared to Its Wild Relative E. oleifera (H.B.K) Cortés. PLoS ONE, (9), e95412. https://doi. org/10.1371/journal.pone.0095412

  65. Mushtag, M., Tan, I. B., Devi, C., Majidaje S., Nadeem, M. & Lee, S. (2013) Epoxidation of Fatty Acid Methyl Esters derived from Jatropha oil. Grasas y aceites., (64), 103- 114. https://doi.org/10.1109/NatPC.2011.6136253

  66. Mushtaq, M., Tan, I. M., Sagir, M., SulemanTahir, M. & Pervaiz, M. (2016). A novel hybrid catalyst for the esterification of high FFA in Jatropha oil for biodiesel production. Grasas Aceites, (67), e150. http://dx.doi. org/10.3989/gya.0216161.

  67. Mustata, F., Nita, T. & Bicu, I. (2014). The curing reaction of epoxidized methyl esters of corn oil with Diels–Alder adducts of resin acids. The kinetic study and thermal characterization of crosslinked products. J. Anal. Appl. Pyrolysis, (108), 254–264. https://doi.org/10.1016/j. jaap.2014.04.007

  68. Nakpong, P. & Wootthikanokkhan, S. (2010). High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renew. Energy, (35), 1682– 1687. https://doi.org/10.1016/j.renene.2009.12.004

  69. National Center for Biotechnology Information, NCBI. PubChemCompoundDatabase; CID=8343. Recueprado el 25 de noviembre de 2018, de: https:// pubchem.ncbi.nlm.nih.gov/compound/8343

  70. Nicolau A., Samios, D., Piatrick, C. M. S., Reiznautt, B. R., Martini, D. D. & Chagas, A. L. (2012). On the polymerisation of the epoxidized biodiesel: The importance of the epoxy rings position, the process and the products. Eur. Polym. J., (48), 1266–1278. https:// doi.org/10.1016/j.eurpolymj.2012.04.013

  71. Noureddini, H., Teoh, B. C. & Davis Clements, L. (1992). Viscosities of vegetable oils and fatty acids. J. Am. Oil Chem. Soc., (69), 1189–1191.

  72. Olusegun, D. S., Solomon, O. G., & Suleiman A. E. Optimization of coconut oil ethyl esters reaction variables and prediction model of its blends with diesel fuel for density and kinematic viscosity. Biofuels, 7(7), 1-13. https://doi.org/10.1080/17597269.2016.1192445

  73. Orellana-Coca, C., Törnvall, U., Adlercreutz, D., Mattiasson, B. & Hatti-Kaul, R. (2005).Chemo-enzymatic epoxidation of oleic acid and methyl oleate in solventfree medium. Biocatal. Biotransformation, 23, 431– 437. https://doi.org/10.1080/10242420500389488

  74. Petrović, Z. S., Zlatanić, A., Lava, C. C. & Sinadinović-Fišer, S. (2002). Epoxidation of soybean oil in toluene with per (104), 293–299. https://doi.org/10.1002/1438- 9312(200205)104:5<293::AID-EJLT293>3.0.CO;2-W

  75. Piazza, G. J., Nuñez, A. & Foglia, T. A. (2003). Epoxidation of fatty acids, fatty methyl esters, and alkenes by immobilized oat seed peroxygenase. Journal of Molecular Catalysis B: Enzymatic, 21(3), 143-151. https://doi.org/10.1016/S1381-1177(02)00122-4

  76. Poças, M. de F. & Hogg, T. (2007). Exposure assessment of chemicals from packaging materials in foods: a review. Trends Food Sci. Technol., (18), 219–230. https://doi. org/10.1016/j.tifs.2006.12.008

  77. Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L. & Pérez, Á. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol., (100), 261–268. https://doi.org/10.1016/j. biortech.2008.06.039

  78. Rani, S., Joy, M. L. & Nair, K. P. (2015). Evaluation of physiochemical and tribological properties of rice bran oil – biodegradable and potential base stoke for industrial lubricants. Ind. Crops Prod., (65),328–333. https://doi.org/10.1016/j.indcrop.2014.12.020

  79. Rashid, U., Anwar, F., Moser, B. R. & Ashraf, S. (2008). Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass Bioenergy, (32), 1202–1205. https://doi.org/10.1016/j. biombioe.2008.03.001

  80. Royal Society of Chemistry. Chemspidercompounddatabase CID: 473467. Recuperado el 27 de noviembre de 2018, de: http://www.chemspider.com/Chemical- Structure.473467.html

  81. Rudnick, L.R. (2006). Synthetics, Mineral Oils,and Bio- Based LubricantsChemistry and Technology, USA: Taylor and Francis Group.

  82. Rüsch gen. Klaas, M. & Warwel, S. (1999). Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis. Ind. Crops Prod., (9),125–132. https:// doi.org/10.1016/S0926-6690(98)00023-5

  83. Salih, N., Salimon, J., Abdullah, B. M. & Yousif, E. (2017).Thermo-oxidation, friction-reducing and physicochemical properties of ricinoleic acid baseddiester biolubricantsArab. J. Chem., 10, S2273–S2280. https://doi.org/10.1016/j.arabjc.2013.08.002

  84. Sánchez, N., Sánchez, R., Encinar, J. M., González, J. F. & Martínez, G. (2015). Complete analysis of castor oil methanolysis to obtain biodiesel. Fuel, (147), 95–99. https://doi.org/10.1016/j.fuel.2015.01.062

  85. Sanjid A.,Masjuki, H.H., Kalam, M.A., Ashrafur Rahman, S.M.,,Abedin, M.J., & Palash, S.M. (2014). Production of palm and jatropha based biodiesel and investigation of palm-jatropha combined blend properties, performance, exhaust emission and noise in an unmodified diesel engine. J. Clean. Prod., (65), 295– 303. https://doi.org/10.1016/j.jclepro.2013.09.026.

  86. Santos, E. M., Piovesan, N. D., de Barros, E. G. & Moreira, M. A. (2013). Low linolenic soybeans for biodiesel: Characteristics, performance and advantages. Fuel, (104), 861–864. https://doi.org/10.1016/j. fuel.2012.06.014

  87. Schneider, R. de C. S., Nascimento, M. de G., dos Santos- Nunes, M. R. & Lara, L. R. S. (2009). Chemo- Enzymatic Epoxidation of Sunflower Oil Methyl Esters. J. Braz. Chem. Soc., (20), 1472-1477. http:// dx.doi.org/10.1590/S0103-50532009000800013

  88. Sejidov, F. T., Mansoori, Y. & Goodarzi, N. (2005). Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition. J. Mol. Catal. Chem., (240), 186–190. https://doi.org/10.1016/j. molcata.2005.06.048

  89. Severiano, A., Hagström, A. & Hatti-Kaul, R. (2008). Chemo-enzymatic epoxidation of rapeseed methyl esters: Parameters influencing the reaction and enzyme stability. Recuperado el 27 de noviembre de 2018, de; https://pdfs.semanticscholar.org/ a8b3/9c5ef31059472f5b3f67b00a59ec1ff80a20.pdf

  90. Shah, B. L. & Shertukde, V. V. (2003). Effect of plasticizers on mechanical, electrical, permanence, and thermal properties of poly (vinyl chloride). J. Appl. Polym. Sci., (90), 3278–3284. https://doi.org/10.1002/app.13049

  91. Sharma, B. K., Doll, K. M. & Erhan, S. Z. (2007). Oxidation, friction reducing, and low temperature properties of epoxy fatty acid methyl esters. Green Chem., (9), 469- 474.https://doi.org/10.1039/B614100E

  92. Sharma, B. K., Doll, K. M. & Erhan, S. Z. (2008). Ester hydroxy derivatives of methyl oleate: tribological, oxidation and low temperature properties. Bioresour. Technol., (99), 7333–7340. https://doi.org/ 10.1016/j. biortech.2007.12.057

  93. Sharma, R. V., Somidi, A. K. R. & Dalai, A. K. (2015). Preparation and Properties Evaluation of Biolubricants Derived from Canola Oil and Canola Biodiesel. J. Agric. Food Chem., (63), 3235–3242. https://doi. org/10.1021/jf505825k

  94. Silva, W. S. D., Lapis, A. A. M., Suárez, P. A. Z. & Neto, B. A. D. (2011). Enzyme-mediated epoxidation of methyl oleate supported by imidazolium-based ionic liquids. J. Mol. Catal. B Enzym., (68), 98–103. https://doi. org/10.1016/j.molcatb.2010.09.019

  95. Somheil, T. (2014). Study: global PVC demand to grow 3.2% annually through 2021. Recuperado el 11 de mayo de 2018, de: https://www.plasticstoday.com/materials/ study-global-pvc-demand-grow-32-annuallythrough- 2021/35040108220973

  96. Soni, S. & Agarwal, M. (2014). Lubricants from renewable energy sources – a review. Green Chem. Lett. Rev., (7), 359–382. https://doi.org/10.1080/17518253.2014.959 565

  97. Sonnet, P. E., Lankin, M. E. & McNeill, G. P. (1995). Reactions of dioxiranes with selected oleochemicals. J. Am. Oil Chem. Soc., (72), 199–204. https://doi.org/10.1007/ BF02638900

  98. Sustaita-Rodríguez, A., Ramos-Sánchez, V., Camacho- Dávila, A. A., Zaragoza-Galán, G., Espinoza-Hicks, J.C. & Chávez-Flores, D. (2018). Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid. Chem. Cent. J., (12), 12-29. https://doi. org/10.1186/s13065-018-0409-2

  99. Swern, D. (1947). Electronic interpretation of the reaction of olefins with organic per-acids. J. Am. Chem. Soc., (69), 1692–1698. https://doi.org/10.1021/ja01199a037

  100. Tang, Q., Popowicz, G.M., Wang, X., Liu, J., Pavlidis, J. V. & Wang. Y. (2016). Lipase-Driven Epoxidation Is A Two-Stage Synergistic Process. Chemistry Select, (1), 836–839. https://doi.org/10.1002/slct.201600254

  101. Tong, K.-H., Wong, K.-Y. & Chan, T. H. (2005). A chemoenzymic approach to the epoxidation of alkenes in aqueous media. Tetrahedron, (61), 6009–6014. https://doi.org/10.1016/j.tet.2005.04.055

  102. Torres, M., Jiménez-Oses, G., Mayoral, J. A., Pires, E., Blanco, R.M. & Fernández, O. (2012). Evaluation of several catalytic systems for the epoxidation of methyl oleate using H2O2 as oxidant. Catal. Today, (195), 76– 82. https://doi.org/10.1016/j.cattod.2012.05.005

  103. Urbanus, J. H., Lobo, R. C. & Riley, A. J. (2003). European Hazard Classification Advice for Crude Oil–Derived Lubricant Base Oils Compared with the Proposed Mineral Oil Mist TLV®. Appl. Occup. Environ. Hyg., (18), 815–817. https://doi. org/10.1080/10473220390237304

  104. Vieira, M. G. A., da Silva, M. A., dos Santos, L. O. & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J., (47), 254– 263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

  105. Wang, J., Zhao, X. & Liu, D. (2017). Preparation of Epoxidized Fatty Acid Methyl Ester with in situ Auto-Catalyzed Generation of Performic Acid and the Influence of Impurities on Epoxidation. Waste Biomass Valorization, 9(10), 1881-1891. https://doi. org/10.1007/s12649-017-9945-6

  106. White, M. C., Doyle, A. G. & Jacobsen, E. N. (2001). A Synthetically Useful, Self-Assembling MMO Mimic System for Catalytic Alkene Epoxidation with Aqueous H 2 O 2. J. Am. Chem. Soc., (123), 7194–7195. https:// doi.org/10.1021/ja015884g

  107. Wilde, N., Pelz, M., Gebhardt, S. G. & Gläser, R. (2015). Highly efficient nano-sized TS-1 with micromesoporosity from desilication and recrystallization for the epoxidation of biodiesel with H2O2. Green Chem., (17), 3378–3389. https://doi.org/10.1039/ C5GC00406C

  108. Yaakob, Z., Mohammad, M., Alherbawi, M., Alam, Z. & Sopian, K. (2013). Overview of the production of biodiesel from Waste cooking oil. Renew. Sustain. Energy Rev., (18), 184–193. https://doi.org/10.1016/j. rser.2012.10.016

  109. Zheng, T., Wu, Z., Xie, Q., Fang, J., Hu, Y., Lu M., Xia, F., Nie, Y. & Jianbing, J. (2018). Structural modification of waste cooking oil methyl esters as cleaner plasticizer to substitute toxic dioctyl phthalate. J. Clean. Pro., (186), 1021–1030. https://doi.org/10.1016/j. jclepro.2018.03.175




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2019;22