medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2019; 22 (1)

Structural and Functional Features of a N-Succinyl-L, L-diaminopimelate desuccinylase, acritical enzyme for bacterial growth and anantimicrobial target

Díaz-Sánchez ÁG, Terrazas-López M, Aguirre-Reyes LG, Lobo-Galo N, Álvarez-Parrilla E, Martínez-Martínez A
Full text How to cite this article

Language: Spanish
References: 50
Page: 1-16
PDF size: 1167.01 Kb.


Key words:

protein structure, protein function, enzymes, inhibition, conformational dynamics.

ABSTRACT

N-Succinyl-L, L-diaminopimelate desuccinylase (DapE) is a strictly dimeric zinc-dependent amidohydrolase, which catalyzes the decomposition of N-succinyl-L, L-2,6-diaminopimelate (NSDAP), into succinate and diaminopimelate (DAP). This reaction constitutes the only source of meso-diaminopimelate (mDAP) and L-Lys in most bacteria. DapE is essential for bacterial growth and a pharmacological antimicrobial target. The development of anti-DapE inhibitors must take into account the dynamic properties of the enzyme. There is a special interest in compounds that block the formation of the oxyanion hole, where is assembled with groups of both subunits of the dimer and accommodated in its catalytic position by the conformational change of the enzyme from an open to a closed state, upon productive substrate binding. The hole stabilizes reaction intermediaries, thus contributing to the decrease in the activation energy. Based on the crystallographic analysis and the coupling of the substrate into DapE presented in this work, the role of the conformational flexibility of the enzyme in substrate hydrolysis is discussed. It is observed that the susceptible carbonyl group of the substrate and a water molecule located in the active site are near to the trajectory of attack, the Bürgi-Dunitz angle.


REFERENCES

  1. Alcorlo, M., Martínez-Caballero, S., Molina, R. & Hermoso, J. A. (2017). Carbohydrate recognition and lysis by bacterial peptidoglycan hydrolases. Current Opinion in Structural Biology, 44 (Figure 1), 87–100. https://doi. org/10.1016/j.sbi.2017.01.001.

  2. Badger, J., Sauder, J. M., Adams, J. M., Antonysamy, S., Bain, K., Bergseid, M. G., Buchanan, S.G., Buchanan, M.D., Batiyenko, Y., Christopher, J.A., Emtage, S., Eroshkina, A., Feil, I., Furlong, E.B., Gajiwala, K.S., Gao, X., He, D., Hendle, J., Huber, A., Hoda, K., Kearins, P., Kissinger, C., Laubert, B., Lewis, H.A., Lin, J., Loomis, K., Lorimer, D., Louie, G., Maletic, M., Marsh, C.D., Miller, I., Molinari, J., Muller-Dieckmann, H.J., Newman, J.M., Noland, B.W., Pagarigan, B., Park, F., Peat, T.S., Post, K.W., Radojicic, S., Ramos, A., Romero, R., Rutter, M.E., Sanderson, W.E., Schwinn, K.D., Tresser, J., Winhoven, J., Wright, T.A., Wu, L., Xu, J. & Harris, T.J.R. (2005). Structural analysis of a set of proteins resulting from a bacterial genomics project. Proteins: Structure, Function, and Bioinformatics, 60(4), 787–796. https://doi. org/10.1002/prot.20541.

  3. Bell, J. K., Grant, G. A. & Banaszak, L. J. (2004). Multiconformational States in Phosphoglycerate Dehydrogenase. Biochemistry, 43(12), 3450–3458. https://doi.org/10.1021/bi035462e.

  4. Bienvenue, D. L., Gilner, D. M., Davis, R. S., Bennett, B. & Holz, R. C. (2003). Substrate Specificity, Metal Binding Properties, and Spectroscopic Characterization of the DapE-Encoded N -Succinyl- l, l -Diaminopimelic Acid Desuccinylase from Haemophilus influenzae. Biochemistry, 42(36), 10756–10763. https://doi. org/10.1021/bi034845+.

  5. Born, T. L., Zheng, R. & Blanchard, J. S. (1998). Hydrolysis of N -Succinyl- L, L-diaminopimelic Acid by the Haemophilus influenzae dapE-Encoded Desuccinylase: Metal Activation, Solvent Isotope Effects, and Kinetic Mechanism. Biochemistry, 2960(98), 10478–10487.

  6. Born, T. L. & Blanchard, J. S. (1999). Structure/function studies on enzymes in the diaminopimelate pathway of bacterial cell wall biosynthesis. Current Opinion in Chemical Biology, 3(5), 607–613. https://doi.org/10.1016/ S1367-5931(99)00016-2.

  7. Broder, D. H. & Miller, C. G. (2003). DapE can function as an aspartyl peptidase in the presence of Mn2+. Journal of Bacteriology, 185(16), 4748–4754. https://doi. org/10.1128/JB.185.16.4748-4754.2003.

  8. Brunger, A. T., Das, D., Deacon, A. M., Grant, J., Terwilliger, T. C., Read, R. J., Adams, P. D., Levitt, M. & Schröder, G. F. (2012). Application of DEN refinement and automated model building to a difficult case of molecularreplacement phasing: The structure of a putative succinyldiaminopimelate desuccinylase from Corynebacterium glutamicum. Acta Crystallographica Section D: Biological Crystallography, 68(4), 391–403. https://doi. org/10.1107/S090744491104978X.

  9. Burgi, H. B., Dünitz, J. D. & Shefter, E. (1973). Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group. Journal of the American Chemical Society, 95(15), 5065–5067. https://doi.org/10.1021/ ja00796a058.

  10. Bzymek, K. P. & Holz, R. C. (2004). The catalytic role of glutamate 151 in the leucine aminopeptidase from Aeromonas proteolytica. Journal of Biological Chemistry, 279(30), 31018–31025. https://doi.org/10.1074/jbc. M404035200.

  11. Cosper, N. J., Bienvenue, D. L., Shokes, J. E., Gilner, D. M., Tsukamoto, T., Scott, R. A. & Holz, R. C. (2003). The dapE-Encoded N-Succinyl-L, L-Diaminopimelic Acid Desuccinylase from Haemophilus influenzae Is a Dinuclear Metallohydrolase. Journal of the American Chemical Society, 125(48), 14654–14655. https://doi. org/10.1021/ja036650v.

  12. Davis, R., Bienvenue, D., Swierczek, S. I., Gilner, D. M., Rajagopal, L., Bennett, B. & Holz, R. C. (2006). Kinetic and spectroscopic characterization of the E134A- and E134Daltered dapE-Encoded N-succinyl-l, l-diaminopimelic acid desuccinylase from Haemophilus influenzae. JBIC Journal of Biological Inorganic Chemistry, 11(2), 206– 216. https://doi.org/10.1007/s00775-005-0071-8.

  13. Díaz-Sánchez, Á., Alvarez-Parrilla, E., Martínez-Martínez, A., Aguirre-Reyes, L., Orozpe-Olvera, J., Ramos-Soto, M., Núñez-Gastélum, J., Alvarado-Tenorio, B. & de la. Rosa, L. (2016). Inhibition of Urease by Disulfiram, an FDA-Approved Thiol Reagent Used in Humans. Molecules 2016, 21(12), 1628. https://doi.org/10.3390/ MOLECULES21121628.

  14. Dramsi, S., Magnet, S., Davison, S. & Arthur, M. (2008). Covalent attachment of proteins to peptidoglycan. FEMS Microbiology Reviews, 32(2), 307–320. https://doi. org/10.1111/j.1574-6976.2008.00102.x.

  15. Dutta, D. & Mishra, S. (2016). Structural and mechanistic insight into substrate binding from the conformational dynamics in apo and substrate-bound DapE enzyme. Physical Chemistry Chemical Physics. 18(3),1671-1680.

  16. Dutta, D. & Mishra, S. (2017). Active Site Dynamics in Substrate Hydrolysis Catalyzed by DapE Enzyme and Its Mutants from Hybrid QM/MM-Molecular Dynamics Simulation. Journal of Physical Chemistry B, 121(29), 7075–7085. https://doi.org/10.1021/acs.jpcb.7b04431.

  17. Gillner, D., Armoush, N., Holz, R. C. & Becker, D. P. (2009a). Inhibitors of bacterial N-succinyl-l, l-diaminopimelic acid desuccinylase (DapE) and demonstration of in vitro antimicrobial activity. Bioorganic and Medicinal Chemistry Letters, 19(22), 6350–6352. https://doi. org/10.1016/j.bmcl.2009.09.077.

  18. Gillner, D. M., Bienvenue, D. L., Nocek, B. P., Joachimiak, A., Zachary, V., Bennett, B. & Holz, R. C. (2009b). The dapE-encoded N-succinyl-l, l-diaminopimelic acid desuccinylase from Haemophilus influenzae contains two active-site histidine residues. JBIC Journal of Biological Inorganic Chemistry, 14(1), 1–10. https://doi. org/10.1007/s00775-008-0418-z.

  19. Gillner, D. M., Becker, D. P. & Holz, R. C. (2013). Lysine biosynthesis in bacteria: a metallodesuccinylase as a potential antimicrobial target. JBIC Journal of Biological Inorganic Chemistry, 18(2), 155–163. https://doi. org/10.1007/s00775-012-0965-1.

  20. Gillner, D. M., Makowska-Grzyska, M. Joachimiak, A. & Holz, R. C. (2015). Inhibition of the dapE-Encoded N-Succinyl-L, L-diaminopimelic Acid Desuccinylase from Neisseria meningitidis by L-Captopril. Biochemistry, 54(31), 4834–4844. https://doi.org/10.1021/acs. biochem.5b00475.

  21. Girish, T. S. & Gopal, B. (2010). Crystal structure of Staphylococcus aureus metallopeptidase (Sapep) reveals large domain motions between the manganese-bound and apo-states. The Journal of Biological Chemistry, 285(38), 29406–29415. https://doi.org/10.1074/jbc.M110.147579

  22. Glasner, M. E., Gerlt, J. A. & Babbitt, P. C. (2006). Evolution of enzyme superfamilies. Current Opinion in Chemical Biology, 10(5), 492-497. https://doi.org/10.1016/j. cbpa.2006.08.012. Heath, T. K., Lutz, M. R., Reidl, C. T., Guzman, E. R.,

  23. Herbert, C. A., Nocek, B. P., Holz, R. C., Olsen, K. W., Ballicora, M. A. & Becker, D. P. (2018). Practical spectrophotometric assay for the dapE-encoded N-succinyl-L, L-diaminopimelic acid desuccinylase, a potential antibiotic target. PLOS ONE, 13(4), e0196010. https://doi.org/10.1371/journal.pone.0196010.

  24. Hlaváček, J., Vítovcová, M., Sázelová, P., Pícha, J., Vaněk, V., Buděšínský, M., Jiráček, J.,

  25. Gillner, D. M., Holz, R. C., Mikšík, I. & Kašička, V. (2014). Mono-N-acyl-2,6-diaminopimelic acid derivatives: Analysis by electromigration and spectroscopic methods and examination of enzyme inhibitory activity. Analytical Biochemistry, 467, 4–13. https://doi.org/10.1016/J. AB.2014.08.032.

  26. Kamerlin, S. C. L., Chu, Z. T. & Warshel, A. (2010). On Catalytic Preorganization in Oxyanion Holes: Highlighting the Problems with the Gas-Phase Modeling of Oxyanion Holes and Illustrating the Need for Complete Enzyme Models. The Journal of Organic Chemistry, 75(19), 6391–6401. https://doi.org/10.1021/jo100651s.

  27. Karita, M., Etterbeek, M. L., Forsyth, M. H., Tummuru, M. K. R. & Blaser, M. J. (1997). Characterization of Helicobacter pylori dapE and construction of a conditionally lethal dapE mutant. Infection and Immunity. (65)10, 4158– 4164. https://iai.asm.org/content/65/10/4158.long.

  28. Kindler, S. H. & Gilvardo, C. (1960). N-succinyl-L-a, E-diaminopimelic Acid Deacylase. The Journal of Biological Chemistry, 235(12), 3532–3536.

  29. Klimacek, M. & Nidetzky, B. (2010). The oxyanion hole of Pseudomonas fluorescens mannitol 2-dehydrogenase: a novel structural motif for electrostatic stabilization in alcohol dehydrogenase active sites. Biochemical Journal, 425(2), 455–463. https://doi.org/10.1042/BJ20091441.

  30. Lin, Y. K., Myhrman, R., Schrag, M. L. & Gelb, M. H. (1988). Bacterial N-succinyl-L-diaminopimelic acid desuccinylase. Purification, partial characterization, and substrate specificity. The Journal of Biological Chemistry, 263(4), 1622–1627.http://www.ncbi.nlm.nih. gov/pubmed/3276674.

  31. Lindner, H. A., Lunin, V. V, Alary, A., Hecker, R., Cygler, M. & Ménard, R. (2003). Essential roles of zinc ligation and enzyme dimerization for catalysis in the aminoacylase-1/ M20 family. The Journal of Biological Chemistry, 278(45), 44496–44504. https://doi.org/10.1074/jbc. M304233200.

  32. McGregor, W. C., Gillner, D. M., Swierczek, S. I., Liu, D. & Holz, R. C. (2013). Identification of a Histidine Metal Ligand in the argE-Encoded N-Acetyl-L-Ornithine Deacetylase from Escherichia coli. SpringerPlus, 2(1), 482. https://doi.org/10.1186/2193-1801-2-482.

  33. Muñoz-Clares, R. A., González-Segura, L. & Díaz-Sánchez, Á. G. (2011). Crystallographic evidence for active-site dynamics in the hydrolytic aldehyde dehydrogenases. Implications for the deacylation step of the catalyzed reaction. In Chemico-Biological Interactions191(1-3), 137–146. https://doi.org/10.1016/j.cbi.2010.12.024.

  34. Nocek, B. P., Gillner, D. M., Fan, Y., Holz, R. C. & Joachimiak, A. (2010). Structural Basis for Catalysis by the Mono- and Dimetalated Forms of the dapE-Encoded N-succinyl-l, l-Diaminopimelic Acid Desuccinylase. Journal of Molecular Biology, 397(3), 617–626. https:// doi.org/10.1016/j.jmb.2010.01.062.

  35. Nocek, B., Reidl, C., Starus, A., Heath, T., Bienvenue, D., Osipiuk, J., Jedrzejczak, R., Joachimiak, A., Becker, D. P. & Holz, R. C. (2018). Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE Enzymes: Impact on the Catalytic Mechanism. Biochemistry, 57(5), 574–584. https://doi.org/10.1021/ acs.biochem.7b01151.

  36. Nocek, B., Starus, A., Makowska-Grzyska, M., Gutierrez, B., Sanchez, S., Jedrzejczak, R., Mack, J. C., Olsen, K. W., Joachimiak, A. & Holz, R. C. (2014). The Dimerization Domain in DapE Enzymes is Required for Catalysis. PLoS ONE, 9(5), e93593. https://doi.org/10.1371/journal. pone.0093593.

  37. Okumura, N., Tamura, J. & Takao, T. (2016). Evidence for an essential role of intradimer interaction in catalytic function of carnosine dipeptidase II using electrosprayionization mass spectrometry. Protein Science, 25(2), 511–522. https://doi.org/10.1002/pro.2842.

  38. Oxyanion Hole - an overview | Science Direct Topics. (n.d.). Retrieved March 28, 2019, from https://www. sciencedirect.com/topics/biochemistry-genetics-andmolecular- biology/oxyanion-hole.

  39. Paphitou, N. I. (2013). Antimicrobial resistance: action to combat the rising microbial challenges. International Journal of Antimicrobial Agents, 42(1), S25–S28. https:// doi.org/10.1016/j.ijantimicag.2013.04.007.

  40. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). UCSF Chimera? A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/ jcc.20084.

  41. Rowsell, S., Pauptit, R. A., Tucker, A. D., Melton, R. G., Blow, D. M.& Brick, P. (1997). Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy. Structure, 5(3), 337–347. https://doi.org/10.1016/S0969-2126(97)00191-3.

  42. Schrödinger, L. (2015). The PyMOL molecular graphics system, version 1.8. Https://www.Pymol.Org/Citing.

  43. Sim, L. & Goodman, J. M. (2010). Enzyme Catalysis by Hydrogen Bonds: The Balance between Transition State Binding and Substrate Binding in Oxyanion Holes. J. Org. Chem, 75(6), 1831-1840. https://doi.org/10.1021/ jo901503d.

  44. Soskine, M. & Tawfik, D. S. (2010). Mutational effects and the evolution of new protein functions. Nature Reviews Genetics. (11)8, 572-582. https://doi.org/10.1038/nrg2808.

  45. Starus, A., Nocek, B., Bennett, B., Larrabee, J. A., Shaw, D. L., Sae-Lee, W., Russo, M. T.

  46. Uda, N. R. & Creus, M. (2011). Selectivity of inhibition of N-succinyl-L, L-diaminopimelic acid desuccinylase in bacteria: the product of dape-gene is not the target of L-captopril antimicrobial activity. Bioinorganic Chemistry and Applications, 2011, 1–6. https://doi. org/10.1155/2011/306465.

  47. Uda, N. R., Upert, G., Angelici, G., Nicolet, S., Schmidt, T., Schwede, T. & Creus, M. (2014). Zinc-selective inhibition of the promiscuous bacterial amide-hydrolase DapE: implications of metal heterogeneity for evolution and antibiotic drug design. Metallomics, 6(1), 88–95. https://doi.org/10.1039/C3MT00125C.

  48. Usha, V., Lloyd, A. J., Lovering, A. L. & Besra, G. S. (2012). Structure and function of Mycobacterium tuberculosis meso-diaminopimelic acid (DAP) biosynthetic enzymes. FEMS Microbiology Letters, 330(1), 10-16. https://doi. org/10.1111/j.1574-6968.2012.02527.x.

  49. Van Der Kamp, M. W. & Mulholland, A. J. (2008). Computational enzymology: Insight into biological catalysts from modelling. Natural Product Reports. 25(6), 1001-1014. https://doi.org/10.1039/b600517a.

  50. Vollmer, W., Blanot, D. & De Pedro, M. A. (2008). Peptidoglycan structure and architecture. FEMS Microbiology Reviews, 32(2), 149–167. https://doi. org/10.1111/j.1574-6976.2007.00094.x..




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2019;22