medigraphic.com
SPANISH

Archivos de Neurociencias

Instituto Nacional de Neurología y Neurocirugía
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back

Arch Neurocien 2020; 25 (1)

Update on the functional anatomy of the corticospinal tract in humans

Marín-Castro MJ, Guerra-Espinosa V, Neira-Gómez JP, Carvajal-Fernández J, Suárez-Escudero JC
Full text How to cite this article

Language: Spanish
References: 52
Page: 38-50
PDF size: 428.53 Kb.


Key words:

anatomy, efferent pathways, motor cortex, motor neurons, neuroanatomy, pyramidal tracts.

ABSTRACT

Introduction: the pyramidal Tract or Corticospinal Tract (CST) is a challenging topic to teach as to learn, both for students and for health professionals. Knowing their origin and conformation allows us to understand their role not only in the clinical manifestations of the different neurological syndromes, but also its role in the sensory-motor rehabilitation processes.
Objective: to develop a narrative review of the functional anatomy of the motor pathway in humans.
Development: since the first neurophysiological descriptions in the nineteenth century, the comprehension of the CST has evolved considerably. It is currently known to be the main efferent system responsible for the execution of voluntary movements that require precision, adjustment and skill, mainly in the distal regions of the upper limbs. It originates in the cerebral cortex, from where motor neurons project to synapse with the motor nuclei of the cranial nerves in the stem and with the lower motor neurons in the anterior horn of the spinal cord. Its lesions originate the upper motor neuron syndrome, whose clinical presentation depends on the anatomical point where the damage occurs.
Conclusion: the actual technology have allowed us to broaden our knowledge of the CST, which has lead us to know more specifically its conformation and functioning, and its clinical importance both in the upper motor neuron syndrome and in neurorehabilitation.


REFERENCES

  1. Jang S. The corticospinal tract from the viewpoint of brain rehabilitation. J Rehabil Med. 2014; 46(3):193–9. DOI: 10.2340/16501977-1782

  2. Welniarz Q, Dusart I, Roze E. The corticospinal tract: Evolution, development, and human disorders: corticospinal tract human disorders. Dev Neurobiol. 2017; 77(7):810–29. DOI: 10.1002/dneu.22455

  3. Zilles K, Schlaug G, Matelli M, Luppino G, Schleicher A, Qü M, Dabringhaus A, Seitz R, Roland PE. Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat. 1995; 187 ( Pt 3):515-37.

  4. Newton JM, Ward NS, Parker GJM, Deichmann R, Alexander DC, Friston KJ, et al. Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery. Brain. 2006; 129(7):1844–58. DOI: 10.1093/brain/awl106

  5. Kumar A, Juhasz C, Asano E, Sundaram SK, Makki MI, Chugani DC, et al. Diffusion tensor imaging study of the cortical origin and course of the corticospinal Tract in healthy children. Am J neuroradiol. 2009; 30(10):1963– 70. doi:10.3174/ajnr.A1742

  6. Seo JP, Jang SH. Different characteristics of the corticospinal tract according to the cerebral origin: DTI Study. Am J Neuroradiol. 2013; 34(7):1359–63. DOI: 10.3174/ajnr.A3389

  7. Gross CG. The discovery of motor cortex and its background. J Hist Neurosci. 2007; 16(3):320–31.

  8. Chouinard PA, Paus T. The primary motor and premotor areas of the human cerebral cortex. The Neuroscientist. 2006; 12(2):143–52. DOI: 10.1177/1073858405284255

  9. Wiesendanger M. Postlesion recovery of motor and sensory cortex in the early twentieth century. J Hist Neurosci. 2011; 20(1):42–57.

  10. Snell RS. Neuroanatomía clínica. Buenos Aires: Editorial Médica Panamericana; 2009.

  11. DeFelipe J, Fariñas I. The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol. 1992; 39(6):563–607. DOI:10.1016/0301-0082(92)90015-7

  12. Garey LJ. Broadmannś localisation in the cerebral cortex. London: Smith-Gordon; 1994.

  13. Fulton, J . “A note on the definition of the “motor” and “premotor” areas”. Brain 1935. 58(2): 311–31.

  14. Penfield W, Boldrey E. Somatic Motor and Sensory Representation in the Cerebral Cortex of Man as Studied by Electrical Stimulation. Brain. 1937; 60(4):389–443. doi.org/10.1093/brain/60.4.389

  15. Becker RF. The cerebral cortex of man. By Wilder Penfield and Theodore Rasmussen. The Macmillan Company, New York, N.Y. 1950. 248 pp. Am J Phys Anthropol. 1953; 11(3):441–4. doi.org/10.1002/ajpa.1330110318

  16. Dum R, Strick P. The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci. 1991 Mar 1; 11(3):667–89.

  17. Bustamante B, Jairo. Neuroanatomía funcional y clínica: Atlas del sistema nervioso central. Bogotá (Colombia): Celsus; 2001.

  18. García-Porrero JA, Hurlé JM. Anatomía humana. Aravaca, Madrid: McGraw-Hill/Interamericana de España; 2012.

  19. Lemon RN. Descending Pathways in Motor Control. Annu Rev Neurosci. 2008; 31(1):195–218. DOI: 10.1146/annurev.neuro.31.060407.125547

  20. Jane JA, Yashon D, DeMyer W, Bucy PC. The contribution of the precentral gyrus to the pyramidal tract of man. J Neurosurg. 1967; 26(2):244–8. DOI: 10.3171/jns.1967.26.2.0244

  21. Cano de la Cuerda R, Martínez Piédrola RM, Miangolarra Page JC. Control y aprendizaje motor: fundamentos, desarrollo y reeducación del movimiento humano. Madrid: Editorial Médica Panamericana; 2017.

  22. Wycoco V, Shroff M, Sudhakar S, Lee W. White Matter Anatomy. Neuroimaging Clin N Am. 2013; 23(2):197–216. DOI: 10.1016/j.nic.2012.12.002

  23. Brazis PW, Masdeu JC, Biller J. Localization in clinical neurology. 6th ed. Philadelphia: Wolters Kluwer Health/ Lippincott Williams & Wilkins; 2011. 657 p.

  24. Chen YJ, Nabavizadeh SA, Vossough A, Kumar S, Loevner LA, Mohan S. Wallerian Degeneration Beyond the Corticospinal Tracts: Conventional and Advanced MRI Findings: Wallerian Degeneration: Conventional & Advanced MRI Findings. J Neuroimaging. 2017; 27(3):272–80. DOI: 10.1111/jon.12404

  25. Masri OA. An Essay on the Human Corticospinal Tract: History, Development, Anatomy, and Connections. Neuroanatomy. 2011; 10: 1–4.

  26. Donkelaar HJ, Lammens M, Wesseling P, Hori A, Keyser A, Rotteveel J. Development and malformations of the human pyramidal tract. J Neurol. 2004; 251(12):1429–42. DOI: 10.1007/s00415-004-0653-3

  27. Canty AJ, Murphy M. Molecular mechanisms of axon guidance in the developing corticospinal tract. Prog Neurobiol. 2008; 85(2):214–35. DOI: 10.1016/j.pneurobio.2008.02.001

  28. Martin JH. The Corticospinal System: From Development to Motor Control. The Neuroscientist. 2005; 11(2):161–73. DOI: 10.1177/1073858404270843

  29. Eyre JA, Miller S, Clowry GJ, Conway EA, Watts C. Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain. 2000; 123(1):51– 64. DOI: 10.1093/brain/123.1.51

  30. Yamada K, Kizu O, Kubota T, Ito H, Matsushima S, Oouchi H, et al. The pyramidal tract has a predictable course through the centrum semiovale: A diffusion-tensor based tractography study. J Magn Reson Imaging. 2007; 26(3):519–24. DOI: 10.1002/jmri.21006

  31. Holodny AI. Diffusion tensor tractography of the motor white matter tracts in man: current controversies and future directions. Ann N Y Acad Sci. 2005; 1064(1):88–97. DOI: 10.1196/annals.1340.016

  32. Song Y-M. Somatotopic organization of motor fibers in the corona radiata in monoparetic patients with small subcortical infarct. Stroke. 2007; 38(8):2353–5. DOI: 10.1161/STROKEAHA.106.480632

  33. Kim Y-H, Kim D-S, Hong JH, Park CH, Hua N, Bickart KC, et al. Corticospinal tract location in internal capsule of human brain: di¡usion tensor tractography and functional MRI study. :4. DOI: 10.1097/WNR.0b013e328300a086

  34. Han BS, Hong JH, Hong C, Yeo SS, Lee D hoon, Cho HK, et al. Location of the corticospinal tract at the corona radiata in human brain. Brain Res. 2010; 1326:75–80. DOI: 10.1016/j.brainres.2010.02.050

  35. Park JK, Kim BS, Choi G, Kim SH, Choi JC, Khang H. Evaluation of the somatotopic organization of corticospinal tracts in the internal capsule and cerebral peduncle: results of diffusion-tensor MR tractography. Korean J Radiol. 2008; 9(3):191. DOI: 10.3348/kjr.2008.9.3.191

  36. Waragai M, Watanabe H, Iwabuchi S. The somatotopic localisation of the descending cortical tract in the cerebral peduncle: a study using MRI of changes following Wallerian degeneration in the cerebral peduncle after a supratentorial vascular lesion. Neuroradiology. 1994; 36(5):402–4. DOI: 10.1007/bf00612128

  37. Verstynen T, Jarbo K, Pathak S, Schneider W. In Vivo mapping of microstructural somatotopies in the human corticospinal pathways. J Neurophysiol. 2011; 105(1):336–46. DOI: 10.1152/jn.00698.2010

  38. Kwon HG, Hong JH, Jang SH. Anatomic location and somatotopic arrangement of the corticospinal tract at the cerebral peduncle in the human brain. Am J Neuroradiol. 2011; 32(11):2116–9. DOI: 10.3174/ajnr.A2660

  39. Hong JH, Son SM, Jang SH. Somatotopic location of corticospinal tract at pons in human brain: A diffusion tensor tractography study. NeuroImage. 2010; 51(3):952–5. DOI: 10.1016/j.neuroimage.2010.02.063

  40. Kaneko K, Kawai S, Taguchi T, Fuchigami Y, Morita H, Ofuji A, et al. Spatial distribution of corticospinal potentials following transcranial electric and magnetic stimulation in human spinal cord. J Neurol Sci. 1997; 151(2):217– 21. doi.org/10.1152/jn.00554.2019

  41. Nathan PW, Smith MC, Deacon P. The corticospinal tracts in man: course and location of fibres at different segmental levels. Brain. 1990; 113(2):303–24. DOI: 10.1093/brain/113.2.303

  42. Brinkman J, Kuypers HGJM. Cerebral control of contralateral and ipsilateral arm, hand and finger movements in the split-brain rhesus monkey. Brain. 1973; 96(4):653–74. DOI: 10.1093/brain/96.4.653

  43. Davidoff, MD RA. The pyramidal tract. Neurology. 1990; 40(2):332–332. DOI: 10.1212/wnl.40.2.332

  44. Vulliemoz S, Raineteau O, Jabaudon D. Reaching beyond the midline: why are human brains cross wired? Lancet Neurol. 2005; 4(2):87–99. DOI: 10.1016/S1474-4422(05)00990-7

  45. Lacroix S, Havton LA, McKay H, Yang H, Brant A, Roberts J, et al. Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: A quantitative study. J Comp Neurol. 2004; 473(2):147–61. DOI: 10.1002/cne.20051

  46. Haines DE, Mihailoff GA, editors. Fundamental neuroscience for basic and clinical applications. Fifth edition. Philadelphia, PA: Elsevier; 2018. 516 p.

  47. Bradley D. The Physiology of Excitable Cells, 4th edn. By DAVID J. AIDLEY. Cambridge: Cambridge University Press. 1998. J Anat. 1999; 195(2):315–7. doi: 10.1046/j.1469-7580.1999.195203154.x

  48. Sepúlveda P, Bacco JL, Cubillos A, Doussoulin A. Espasticidad como signo positivo de daño de motoneurona superior y su importancia en rehabilitación. Ces Med. 2018 Dec;32(3):259–69. DOI: http://dx.doi.org/10.21615/ cesmedicina.32.3.7

  49. Bähr M, Frotscher M. Duus’ topical diagnosis in neurology: anatomy, physiology, signs, symptoms. 5th ed. Stuttgart New York, NY: Thieme; 2012. 333 p.

  50. Li S. Spasticity, Motor recovery, and neural plasticity after stroke. front Neurol [Internet]. 2017. http://journal. frontiersin.org/article/10.3389/fneur.2017.00120/full

  51. Nielsen JB, Crone C, Hultborn H. The spinal pathophysiology of spasticity--from a basic science point of view. Acta Physiol Oxf Engl. 2007 Feb;189(2):171–80. DOI: 10.1111/j.1748-1716.2006.01652.x

  52. Najafi MR, Chitsaz A, Najafi MA. Jacksonian seizure as the relapse symptom of multiple sclerosis. J Res Med Sci Off J Isfahan Univ Med Sci. 2013; 18(Suppl 1):S89-92.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Arch Neurocien. 2020;25