medigraphic.com
SPANISH

Revista Mexicana de Pediatría

ISSN 0035-0052 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 3

<< Back Next >>

Rev Mex Pediatr 2020; 87 (3)

Hemodynamic responses during a visual orienting attention task in infants

Rodríguez SE, Harmony T, Magaldi HA, Fernández T
Full text How to cite this article 10.35366/94839

DOI

DOI: 10.35366/94839
URL: https://dx.doi.org/10.35366/94839

Language: English
References: 24
Page: 97-101
PDF size: 257.52 Kb.


Key words:

Visual attention, oxygenated hemoglobin, nearinfrared spectroscopy, infants.

ABSTRACT

Introduction: Neuroimaging studies in adults and children of school age have described the role of parietal and frontal cortices in orienting attention. However, this activity has not been reported in infants in the first year of life. Objective: To describe changes in cerebral oxygenated hemoglobin (HbO) in the parietal and frontal cortex during a visual orienting attention task in infants at three different ages: 4, 8 and 12 months. Material and methods: Thirty-seven healthy infants were included. The neuroimaging technique of near-infrared spectroscopy (NIRS) was used. The task consisted in the presentation of moving images appearing in the center, left and right of a computer monitor. Results: During the task, we found the highest HbO concentration in the right parietal and frontal cortices in all three age groups; the 12 monthsold group showed also a higher concentration of HbO in the left parietal and frontal areas. Conclusion: In the three age groups, the right parietal and frontal cortices were more active during a visual orienting attention task. Infants at 12 monthsold have better visual attention abilities, as in adulthood.


REFERENCES

  1. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems [published correction appears in Proc Natl Acad Sci U S A. 2006;103(36):13560]. Proc Natl Acad Sci U S A. 2006; 103(26): 10046‐10051. doi: 10.1073/pnas.0604187103.

  2. Petersen SE, Posner MI. The attention system of the human brain: 20 years after. Annu Rev Neurosci. 2012; 35: 73‐89. doi: 10.1146/ annurev-neuro-062111-150525.

  3. Corbetta M, Shulman GL. Control of goal-directed and stimulusdriven attention in the brain. Nat Rev Neurosci. 2002; 3(3): 201‐215. doi: 10.1038/nrn755.

  4. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI. The activation of attentional networks. Neuroimage. 2005; 26(2): 471‐479. doi: 10.1016/j.neuroimage.2005.02.004.

  5. Petrides M. Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci. 2005; 360(1456): 781‐795. doi: 10.1098/rstb.2005.1631.

  6. Kulke L, Atkinson J, Braddick O. Neural mechanisms of attention become more specialised during infancy: Insights from combined eye tracking and EEG. Dev Psychobiol. 2017; 59(2): 250‐260. doi: 10.1002/dev.21494.

  7. Richards JE. The development of visual attention and the brain. In: Hann M, Johnson MH. Psychology press (Eds.). New York: The Cognitive Neuroscience of Development; 2003. pp. 73-98. ISBN-13: 978-1841692142.

  8. Atkinson J, Braddick O. Visual attention in the first years: typical development and developmental disorders. Dev Med Child Neurol. 2012; 54(7): 589‐595. doi: 10.1111/j.1469-8749.2012.04294.x.

  9. Johnson MH, Posner MI, Rothbart MK. Components of visual orienting in early infancy: contingency learning, anticipatory looking, and disengaging. J Cogn Neurosci. 1991; 3(4): 335‐344. doi: 10.1162/jocn.1991.3.4.335.

  10. Calkins SD, Leerkes EM. Early attachment processes and the development of emotional self-regulation. In: Vohs KD, Baumeister RF, editors. Handbook of self-regulation: research, theory, and applications. New York; The Guilford Press; 2011. ISBN: 9781606239483.

  11. Garvey AA, Dempsey EM. Applications of near infrared spectroscopy in the neonate. Curr Opin Pediatr. 2018; 30(2): 209‐215. doi: 10.1097/MOP.0000000000000599.

  12. Lloyd-Fox S, Blasi A, Elwell CE. Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev. 2010; 34(3): 269‐284. doi: 10.1016/j.neubiorev.2009.07.008.

  13. Lloyd-Fox S, Blasi A, Volein A, Everdell N, Elwell CE, Johnson MH. Social perception in infancy: a near infrared spectroscopy study. Child Dev. 2009; 80(4): 986‐999. doi: 10.1111/j.1467- 8624.2009.01312.x.

  14. Roche-Labarbe N, Wallois F, Ponchel E, Kongolo G, Grebe R. Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants. Neuroimage. 2007; 36(3): 718‐727. doi: 10.1016/j. neuroimage.2007.04.002.

  15. Paquette N, Gonzalez-Frankenberger B, Vannasing P, Tremblay J, Florea O, Beland R et al. Lateralization of receptive language function using near-infrared spectroscopy. Neuroscience & Medicine. 2010; 1(2): 64-70. https:// doi:10.4236/nm.2010.12010.

  16. Gervain J, Mehler J, Werker JF et al. Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium. Dev Cogn Neurosci. 2011; 1(1): 22‐46. doi: 10.1016/j. dcn.2010.07.004.

  17. Issard C, Gervain J. Variability of the hemodynamic response in infants: influence of experimental design and stimulus complexity. Dev Cogn Neurosci. 2018; 33: 182‐193. doi: 10.1016/j. dcn.2018.01.009.

  18. Braddick O, Atkinson J, Newman E et al. Global visual motion sensitivity: associations with parietal area and children’s mathematical cognition. J Cogn Neurosci. 2016; 28(12): 1897‐1908. doi: 10.1162/jocn_a_01018.

  19. Butcher PR, Kalverboer AF, Geuze RH. Infants’ shifts of gaze from a central to a peripheral stimulus: a longitudinal study of development between 6 and 26 weeks. Infant Behavior and Development. 2000; 23(1): 3-21. https://doi.org/(...)0163- 6383(00)00031-X

  20. Ross-Sheehy S, Schneegans S, Spencer JP. The Infant Orienting With Attention task: Assessing the neural basis of spatial attention in infancy. Infancy. 2015; 20(5): 467‐506. doi: 10.1111/ infa.12087.

  21. Ross-Sheehy S, Perone S, Macek KL, Eschman B. Visual orienting and attention deficits in 5- and 10-month-old preterm infants. Infant Behav Dev. 2017; 46: 80‐90. doi: 10.1016/j.infbeh.2016.12.004.

  22. Amso D, Scerif G. The attentive brain: insights from developmental cognitive neuroscience. Nat Rev Neurosci. 2015; 16(10): 606‐619. doi: 10.1038/nrn4025.

  23. Reynolds GD, Romano AC. The development of attention systems and working memory in infancy. Front Syst Neurosci. 2016; 10: 15. doi: 10.3389/fnsys.2016.00015.

  24. Rueda MR, Posner MI, Rothbart MK. The development of executive attention: contributions to the emergence of selfregulation. Dev Neuropsychol. 2005; 28(2): 573‐594. doi: 10.1207/ s15326942dn2802_2.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Pediatr. 2020;87