medigraphic.com
SPANISH

MediSur

ISSN 1727-897X (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2019, Number 5

<< Back Next >>

Medisur 2019; 17 (5)

System design to control a wheelchair using brain electric signals

Freire CF, Chadrina O, Maila AE, Drozdov V
Full text How to cite this article

Language: Spanish
References: 13
Page: 650-663
PDF size: 713.04 Kb.


Key words:

brain control, electroencephalography, spastic paraplegia.

ABSTRACT

Foundation: People with spinal cord injuries may have muscular paralysis and inability to perform movements of different parts of the body, depending on the injury level. At present, it is possible to use the electric currents generated on the skull surface, resulting from brain activity, to move an electric wheelchair, so that their dependence decreases.
Objective: to describe a system for controlling a wheelchair, by means of the brain electric signals of a paraplegic patient.
Methods: study of technological innovation, conducted at the Equinoctial Technological University of Ecuador. The software application to detect brain waves was developed on the LabVIEW platform, using Dynamic Link Libraries (edk.dll) from Emotiv and Arduino libraries. The electroencephalography signals generated by the user (emotion, participation / boredom, frustration and meditation) were observed and measured using a waveform. The system test was performed with a 40-year-old patient with spastic paraplegia caused by a fracture in the spine.
Results: an effectiveness index greater than 85 % was obtained. The workload index obtained was 60.33 %, with relevant individual load indices: mental demand with 22.67 % and yield with 30 %.
Conclusion: the described system performance was adequate for the wheelchair prototype mobility.


REFERENCES

  1. Bisaz R, Travaglia A, Alberini CM. The neurobiological bases of memory formation: from physiological conditions to psychopathology. Psychopathology. 2014;47(6):347-56.

  2. World Health Organization. International Perspectives on Spinal Cord Injury [Internet]. Washington, D.C: OPS; 2013 [citado 15/03/2019]. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/94190/9789241564663_eng.pdf?sequence=1.

  3. Orejuela JF, Rodríguez S, Ramírez GL. Self-Help Devices for Quadriplegic Population: A Systematic Literature Review. IEEE Trans Neural Syst Rehabil Eng. 2019;27(4):692-701.

  4. Consejo Nacional para la Igualdad de Discapacidades. Estadísticas de discapacidad [Internet]. Ecuador: CONADIS; 2019 [citado 15/03/2019]. Disponible en: https://www.consejodiscapacidades.gob.ec/estadisticas-de-discapacidad/.

  5. Post MWM, van Leeuwen CMC. Psychosocial issues in spinal cord injury: a review. Spinal Cord. 2012;50(5):382-9.

  6. Al-qaysi ZT, Zaidan BB, Zaidan AA, Suzani MS. A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations. Comput Methods Programs Biomed. 2018;164:221-37.

  7. Hart GS. NASA Task Load Index (TLX). Volume 1.0; Paper and Pencil Package [Internet]. United States: NASA Ames Research Center; 1982 [citado 10/04/2019]. Disponible en: https://ntrs.nasa.gov/search.jsp?R=20000021488.

  8. Novo C, Chacón L, Barradas JA. Mapeo electroencefalográfico y neurofeedback. En: Guevara MA. Aproximaciones al estudio de la neurociencia del comportamiento [Internet]. Ciudad de México: Universidad Autónoma Metropolitana; 2010 [citado 21/01/2019]. Disponible en: https://www.academia.edu/16275937/Mapeo_Electroencefalográfico_y_Neurofeedback.

  9. Koudelková Z, Strmiska M. Introduction to the Identification of Brain Waves Based on Their Frequency. MATEC Web of Conferences [revista en Internet]. 2018 [citado 21/01/2019];210:[aprox. 8p]. Disponible en: https://www.matec-conferences.org/articles/matecconf/pdf/2018/69/matecconf_cscc2018_05012.pdf.

  10. Olejniczak P. Neurophysiologic Basis of EEG. J Clin Neurophysiol. 2006;23(3):186-9.

  11. Guin A, Bikash Baishya B. Brain Controlled Wheelchair using LabVIEW [Internet]. Tamil Nadu: SRM Institute of Science and Technology; 2013 [citado 21/01/2019]. Disponible en: https://www.pantechsolutions.net/blog/wp-content/uploads/2017/10/Brain-controlled-wheel-chair-using-Labview.pdf.

  12. Sinha U, Hegde K. Mind Controlled Wheelchair. IJCTA [revista en Internet]. 2016 [citado 20/05/2019];9(39):[aprox. 20p]. Disponible en: https://www.pantechsolutions.net/blog/wp-content/uploads/2017/10/Brain-controlled-wheel-chair.pdf.

  13. Pantech Solutions. Brain controlled wheel chair [Internet]. Chennai: Pantech solutions; 2017 [citado 21/01/2019]. Disponible en: https://www.pantechsolutions.net/brain-controlled-wheel-chair.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Medisur. 2019;17