medigraphic.com
SPANISH

Revista Cubana de Enfermería

ISSN 1561-2961 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 2

<< Back Next >>

Rev Cuba Enf 2020; 36 (2)

A Proposal of an Android Application Prototype for Nursing Diagnoses Using Artificial Neural Networks

Xavier da SA, Campello de OS, Gonçalves de ARF
Full text How to cite this article

Language: Portugu?s
References: 25
Page: 1-15
PDF size: 387.39 Kb.


Key words:

nursing, artificial intelligence, nursing diagnosis, intensive care units, nursing process.

ABSTRACT

Introduction: Systematization of nursing care must be implemented, especially in the case that there is a more advanced level of patient care, such as in intensive care units, which are recognized places where great experience and technologies are concentrated.
Objective: To propose a model of a decision support system using artificial neural networks for the elaboration of nursing diagnoses through an Android application.
Methods: This study is characterized by being a type of methodological and technological prototype in which the vital signs of patients admitted to an intensive care unit will be analyzed. The data will be obtained from the database of Smart Monitoring of Intensive Care Parameters, which contains physiological signals and vital sign series captured from patient monitors, and which are obtained from hospital medical information systems of thousands of patients in intensive care units.
Results: The application, in its final phase of implementation, is designed with active screens worked together by a body of nursing professionals who gave their opinion on the desired benefits and first impressions.
Conclusions: At this time, tests are being carried out to train the artificial neural network, and an application is expected to be used for promoting nursing diagnoses based on the patient’s vital signs, general health evaluations, and information on the patient's electronic medical history, together with the clinical and critical judgment of the professional nurse.


REFERENCES

  1. Remizoski J, Rocha MM, Vall J. Dificuldades na implantação da sistematização da assistência de enfermagem-SAE: uma revisão teórica. Cadernos da Escola de Saúde. Curitiba. 2017 [acceso: 21/06/2019];1(3):1-14. Disponible en: http://portaldeperiodicos.unibrasil.com.br/index.php/cadernossaude/article/viewFile/2298/1871

  2. Camacho AC, Joaquim FL. Reflexões à luz de Wanda Horta sobre os instrumentos básicos de enfermagem. Rev. Enferm. UFPE Online. 2017 [acceso: 15/07/2019];11(Suppl 12):5432-8. Disponible en: https://doi.org/10.5205/1981-8963-v11i12a23292p5432-5438-2017

  3. Carvalho AC, Oliveira KT, Almeida RS, Souza FS, Menezes HF. Refletindo sobre a prática da sistematização da assistência de enfermagem na unidade de terapia intensiva. Rev. Pesq. Cuid. Fundam. 2013 [acceso: 28/07/2019];5(2):3723-9. DOI: https://doi.org/10.9789/2175-5361.2013v5n2p3723

  4. Junior MGS, Araújo EC, Moraes CRS, Gonçalves LHT. Software para Sistematização da Assistência de Enfermagem em unidade de internação hospitalar. Revista Brasileira de Enfermagem. 2018;71(5). DOI: https://doi.org/10.1590/0034-7167-2016-038

  5. Souza MF, Santos AD, Monteiro AI. O processo de enfermagem na concepção de profissionais de Enfermagem de um hospital de ensino. Rev Bras Enfermagem. Brasília. 2013 [acceso: 13/07/2019];66(2):167-73. Disponible en: http://www.scielo.br/pdf/reben/v66n2/03.pdf

  6. Tannure MC, Pinheiro AM. SAE: Sistematização da Assistência de Enfermagem: guia prático. In: sistematização da assistência de enfermagem (SAE): guia prático; 2011. p. 298.

  7. Lo CK, Chang SS, Chuang CH, Chen HC. A Mobile Nursing App Applying to the Wound Care and Drug Administration of Patients. In 2015 9th International Conference on Mobile and Internet Services in Ubiquitous Computing. IEEE. 2015 [acceso: 21/05/2019]. Disponible en: https://doi.org/10.1109/IMIS.2015.61

  8. Schwonke CR, Lunardi Filho WD, Lunardi VL, Santos SS, Barlem EL. Perspectivas filosóficas do uso da tecnologia no cuidado de enfermagem em terapia intensiva. Rev Bras Enferm, Brasília. 2011 [acceso: 15/07/2019];64(1):189-92. Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-71672011000100028

  9. Hum RS, Cato K, Sheehan B, Patel S, Duchon J, De la Mora P, et al. Developing clinical decision support within a commercial electronic health record system to improve antimicrobial prescribing in the neonatal ICU. Applied clinical informatics. 2014 [acceso: 1/07/2019];5(02):368-87. Disponible en: https://doi.org/10.4338 /ACI-2013-09-RA-0069

  10. Lee J, Scott DJ, Villarroel M, Clifford GD, Saeed M, Mark RG. Open-access MIMIC-II database for intensive care research. In2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011 [acceso: 27/06/2019]. Disponible en: https://doi.org/10.1109 / IEMBS.2011.6092050.

  11. Kakushi LE, Évora YD. Tempo de assistência direta e indireta de enfermagem em unidade de terapia intensiva. Revista Latino-Americana de Enfermagem. 2014 [acceso: 03/06/2019];22(1):150-7. DOI: https://doi.org/10.1590/0104-1169.3032.2381

  12. Ferreira AC, Fernandes BM, Ferreira DD. Noninvasive Approach based on Self Organizing Maps to Classify the Risk of Diabetic Foot. IEEE Latin America Transactions. 2018 [acceso: 12/07/2019];16(1):75-9. DOI: https://doi.org/10.1109.tla.2018.8291457

  13. Samarasinghe S. Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. Auerbach publications; 2016 [acceso: 21/07/2019] Disponible en: https://www.crcpress.com/Neural-Networks-for-Applied-Sciences-and-Engineering-From-Fundamentals/Samarasinghe/p/book/9780849333750

  14. Andrioni V, Guingo BC, Santana EL, Pereira WCA, Infantosi AFC. Comparison of artificial neural networks using texture parameters in the recognition of lesions in mammograms digitized. In: Health Care Exchanges (PAHCE), 2011 Pan American. IEEE; 2011 [acceso: 16/07/2019]. Disponible en: https://doi.org/10.1109/pahce.2011.5871944

  15. Schmeer R, Behrends M, Kupka T, Meyenburg-Altwarg I, Marschollek M. Use and Acceptance of Mobile Technology by Hospital Nurses in Germany. InNursing Informatics 2016 [acceso: 16/07/2019]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27332422

  16. Herdman TH, Kamitsuru S. Diagnósticos de enfermagem da NANDA: definições e classificação 2018-2020. InDiagnósticos de enfermagem da Nanda: definições e classificação 2018-2020. Philadelphia: NANDA; 2018 [acceso: 16/07/2019]. Disponible en: http://nascecme.com.br/2014/wp-content/uploads/2018/08/NANDA-I-2018_2020.pdf

  17. Chianca TC, Lima AP, de Oliveira Salgado P. Diagnósticos de enfermagem identificados em pacientes internados em Unidade de Terapia Intensiva Adulto. Revista da Escola de Enfermagem da USP. 2012 [acceso: 16/07/2019];46(5):1102-8. Disponible en: http://www.scielo.br/pdf/reeusp/v46n5/10.pdf

  18. Liao PH, Hsu PT, Chu W, Chu WC. Applying artificial intelligence technology to support decision-making in nursing: A case study in Taiwan. Health informatics journal. 2015 [acceso: 12/09/2019];21(2):137-48. Disponible en: https://doi.org/10.1177/ 460458213509806

  19. Behrends M, Kupka T, Schmeer R, Meyenburg-Altwarg I, Marschollek M. Knowledge Transfer in Health Care Through Digitally Collecting Learning Experiences-Results of Witra Care. Studies in health technology and informatics. 2016 [acceso: 16/07/2019];225:287-91. Disponible em: https://www.ncbi.nlm.nih.gov/pubmed/27332208

  20. Alencar IG, Nunes VD, Alves AD, Cruz RP. Estratégia de implantação de aplicativo para prescrição de enfermagem. Rev. enferm. UFPE on line. 2018 [acceso: 16/07/2019];12(1):273-9. Disponible en: https://doi.org/10.5205/1981-8963-v12i01a22626p273-279-2018

  21. Vêscovi SD, Primo CC, Sant’Anna HC, Bringuete ME, Rohr RV, Prado TN, Bicudo SD. Mobile application for evaluation of feet in people with diabetes mellitus. Acta Paulista de Enfermagem. 2017 [acceso: 16/07/2019];30(6):607-13. Disponible en: https://www.researchgate.net/publication/322564107_

  22. Johansson P, Petersson G, Saveman BI, Nilsson G. Using advanced mobile devices in nursing practice–the views of nurses and nursing students. Health informatics journal. 2014 [acceso: 16/07/2019];20(3):220-31. Disponible en: https://doi.org/10.1177/1460458213491512

  23. Espinoza-Venegas M, Sanhueza-Alvarado O, Ramírez-Elizondo N, Sáez-Carrillo K. Validação do construto e da confiabilidade de uma escala de inteligência emocional aplicada a estudantes de enfermagem. Revista latino-americana de enfermagem. 2015 [acceso: 16/07/2019];23(1):139-47. DOI: https://doi.org/10.1590/0104-1169.3498.2535

  24. Ferreira AM, Rocha ED, Lopes CT, Bachion MM, Lopes JD, Barros AL. Diagnósticos de enfermagem em terapia intensiva: mapeamento cruzado e Taxonomia da NANDA-I. Revista Brasileira de Enfermagem. 2016 [acceso: 16/07/2019];69(2):307-15. DOI: https://doi.org/10.1590/0034-7167.2016690214i

  25. Duan Y, Zhou G, Zhang Y, Lan Z, Chi C, Yan W. Neural Network Based Clinical Treatment Decision Support System for Co-existing Medical Conditions. In2018 IEEE Third International Conference on Data Science in Cyberspace (DSC) IEEE. 2018 [acceso: 16/07/2019]. Disponible en: https://doi.org/10.1109/DSC.2018.00027




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cuba Enf. 2020;36