medigraphic.com
SPANISH

Revista Cubana de Investigaciones Biomédicas

ISSN 1561-3011 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 2

<< Back Next >>

Rev Cubana Invest Bioméd 2020; 39 (2)

Identification of three basic hand movement patterns by surface electromyography and smart algorithms

Pinto LRA, Coronel MFS, Bueno PFL, Galán MJ
Full text How to cite this article

Language: Spanish
References: 8
Page: 1-14
PDF size: 555.26 Kb.


Key words:

electromyographic signals, pattern prediction, prosthesis, mean quadratic value, cylindrical grasp, pincer, palmar pincer.

ABSTRACT

Introduction: the paper presents the prediction of three basic hand movement types by means of a smart algorithm to draw characteristics indispensable for identification of movement patterns based on the analysis of surface electromyographic signals obtained with the Myo device.
Objective: recognize and predict basic movement patterns of the arm joint using surface electromyography with a view to applying them over a prosthesis prototype.
Methods: data were taken from 13 students aged 22 and 23 years from the Salesian Polytechnic University, each of whom performed three types of grasp: cylindrical, pincer and palmar pincer. A 10 Hz frequency was used and 5 samples were taken of each grasp type during 60 seconds. Statistical analysis was performed with the tool ANOVA, establishing a significance value > 0.65.
Results: in certain volunteers a greater reaction was observed in electrode 1, due to their larger forearms. Response time for identification varies with the number of variables to be compared. When only one movement is analyzed, response time is 2.6 seconds, but when the three movements are examined it rises to 7.8 seconds by the number of electrodes intended to be studied.
Conclusions: the response of the system proposed starts to slow down as more movements are analyzed simultaneously, which makes it less effective. The performance and response time of our system is higher than in state-of-the-art systems, since fewer signal characterization methods are used. On the other hand, a limitation of the project is the sampling frequency of the Myo device (200 Hz).


REFERENCES

  1. Nacional para la Igualdad de Discapacidades (CONADIS)/ Dirección de Gestión Técnica. Ecuador. Febrero 2018. Disponible en: https://www.consejodiscapacidades.gob.ec/estadistica/index.html

  2. Morales RD, Morales DÁ, Grisales VH. Caracterización de señales electromiográficas para la discriminación de seis movimientos de la mano. Scientia et technica. 2009;15(42):278-83. https://dx.doi.org/10.22517/23447214.2683

  3. Betancourt GA, Giraldo Suárez ED, Franco JF. Reconocimiento de patrones de movimiento a partir de señales electromiográficas. Scientia et technica. 2004;10(26). Disponible en: https://www.redalyc.org/pdf/849/84911640010.pdf

  4. Arief Z, Sulistijono IA, Ardiansyah RA. Comparison of five time series EMG features extractions using Myo Armband. International Electronics Symposium (IES). 2015; 11-4. https://dx.doi.org/10.1109/ELECSYM.2015.7380805

  5. Masson S, Fortuna F, Moura F, Soriano D, do ABC SB. Integrating Myo armband for the control of myoelectric upper limb prosthesis. In Proceedings of the XXV Congresso Brasileiro de Engenharia Biomédica. 2016. Disponible en: https://www.researchgate.net/profile/Diogo_Soriano/publication/309415054_INTEGRATING_MYO_ARMBAND_FOR_THE_CONTROL_OF_MYOELECTRIC_UPPER_LIMB_PROSTHESIS/links/580f5bf908aee15d4911f2b2.pdf

  6. Reyes DA, López MA, Duarte JE, Loaiza H. Implementación en FPGA de un clasificador de movimientos de la mano usando señales EMG. Redes de Ingeniería. 2015;6(1):85-94. https://doi.org/10.14483/udistrital.jour.redes.2015.1.a06

  7. García-Pinzón JA, Mendoza LE, Flórez EG. Control de brazo electrónico usando señales electromiográficas. Facultad de Ingeniería. 2015;24(39):71-84. Disponible en: https://www.redalyc.org/pdf/4139/413940776007.pdf

  8. Coronel-Maldonado FS, Pinto-León RA, Bueno-Palomeque FL. Identification of basic patterns in hand movements using surface electromyography. IEEE International Autumn Meeting on Power, Electronics and Computing. México. 2017;1-6. https://doi.org/10.1109/ROPEC.2017.8261658




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Invest Bioméd. 2020;39