medigraphic.com
SPANISH

Revista Cubana de Ortopedia y Traumatología

ISSN 1561-3100 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back Next >>

Revista Cubana de Ortopedia y Traumatología 2020; 34 (1)

Controlled hypotension in spinal surgery

Aparicio MAI, Rizo FY, Pineda GAR
Full text How to cite this article

Language: Spanish
References: 65
Page: 1-22
PDF size: 626.84 Kb.


Key words:

controlled hypotension, deliberate hypotension, spinal surgery.

ABSTRACT

Introduction: Controlled hypotension implies any technique that, used alone or in combination, intentionally lowers blood pressure values during the intraoperative period, in order to reduce bleeding and improve the visibility of the surgical field.
Objective: To describe the physiological foundations, definitions, techniques and complications of controlled hypotension in spinal surgery.
Methods: A literature review was carried out in scientific databases such as Cochrane Database of Systematic Reviews, Pubmed/Medline, EMBASE, SCOPUS, Web of Science, Ebsco Host, ScienceDirect, OVID and the academic search engine Google Scholar, in June 2020.
Conclusion: Controlled hypotension in spinal surgery has limited surgical benefits. However, there is no precise consensus on the hemodynamic thresholds and time limits required for its use, and it is associated with a high risk of potential complications as delirium, postoperative cognitive dysfunction, ischemic stroke, postoperative visual loss, acute kidney injury, myocardial injury, late postoperative neurological deficit and chronic neuropathic pain; therefore, its routine use during the intraoperative period is not recommended.


REFERENCES

  1. Jiang J, Zhou R, Li B, Xue F. Is deliberate hypotension a safe technique for orthopedic surgery?: a systematic review and meta-analysis of parallel randomized controlled trials. Journal of Orthopaedic Surgery and Research. 2019;14(409):[14 p]. DOI: https://doi.org/10.1186/s13018-019-1473-6

  2. Ahmed OH, Nour-Eldin TM, Ali WM, Zaher MAAE. Comparison of the Effect of Nitroglycerin, Magnesium Sulphate and Dexmedetomidine as Hypotensive Agents in Lumbar Spine Surgery. The Egyptian Journal of Hospital Medicine. 2019 [citado 4 Jun 2020];76(7):(4628-38). Disponible en: https://pdfs.semanticscholar.org/d979/53a753fd99bde916b248bf89e9b9b44548c0.pdf

  3. Chen H-T, Hsu C-C, Lu M-L, Chen S-H, Chen J-M, Wu R-W. Effects of Combined Use of Ultrasonic Bone Scalpel and Hemostatic Matrix on Perioperative Blood Loss and Surgical Duration in Degenerative Thoracolumbar Spine Surgery. BioMed Research International. 2019:[7 p]. DOI: https://doi.org/10.1155/2019/6286258

  4. Koraki E, Stachtari C, Stergiouda Z, Stamatopoulou M, Gkiouliava A, Sifaki F, et al. Blood and fluid management during scoliosis surgery: a single‑center retrospective analysis. European Journal of Orthopaedic Surgery & Traumatology. 2020:[6 p]. DOI: https://doi.org/10.1007/s00590-020-02637-y

  5. Santana L, Kiebzak GM, Toomey N, Maul TM. Blood pressure measurements during intraoperative pediatric scoliosis surgery. Saudi J Anaesth. 2020;14(2):(152-6). DOI: https://dx.doi.org/10.4103%2Fsja.SJA_570_19

  6. Oetgen ME, Litrenta J. Perioperative Blood Management in Pediatric Spine Surgery. Journal of the American Academy of Orthopaedic Surgeons [Internet]. 2017;25:(480-8). DOI: http://dx.doi.org/10.5435/JAAOS-D-16-00035

  7. Nazemi AK, Gowd AK, Carmouche JJ, Kates SL, Albert TJ, Behrend CJ. Prevention and Management of Postoperative Delirium in Elderly Patients Following Elective Spinal Surgery. Clinical Spine Surgery [Internet]. 2017 [citado 3 Jun 2020];30(3):(112-9). Disponible en: https://www.ingentaconnect.com/content/wk/clss/2017/00000030/00000003/art00004

  8. McCunniff PT, Young ES, Ahmadinia K, Ahn UM, Ahn NU. Smoking is Associated with Increased Blood Loss and Transfusion Use After Lumbar Spinal Surgery. Clinical Orthopaedics and Related Research. 2016 [citado 4 Jun 2020];474:(1019-25). Disponible en: https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC4773328&blobtype=pdf

  9. Rayes JE, Saliba E, Nicolas N, Ghanem I. Monitoring creatine kinase in spine surgery and its relation to acute renal failure. Lebanese Medical Journal. 2017 [citado 3 Jun 2020];65(3):(139-45). Disponible en: http://www.lebanesemedicaljournal.org/articles/65-3/original3.pdf

  10. Aldebeyan S, Ahn J, Aoude A, Stacey S, Nicholls F. Multimodal Perioperative Blood Management for Spinal Surgery. Operative Techniques in Orthopaedics. 2019:[7 p]. DOI: https://doi.org/10.1016/j.oto.2019.100716

  11. Fauzi A, Moelyono A, Tobing SD. Compared to Conventional Dressing Techniques, Tranexamic Acid Injection Provide Better Surgical Outcomes in Spinal Fusion Surgery. Biomedical & Pharmacology Journal. 2018;11(4):(2215-20). DOI: http://dx.doi.org/10.13005/bpj/1604

  12. Nazir O, Wani MA, Ali N, Sharma T, Khatuja A, Misra R, et al. Dexmedetomidine and Esmolol as Agents to Induce Hypotension in Lumbar Spine Surgery. Trauma Monthly [Internet]. 2016. In Press:[e22078]. DOI: http://dx.doi.org/10.5812/traumamon.22078

  13. Park C, Kim JY, Kim C, Chang CH. Nicardipine Effects on Renal Function During Spine Surgery. Clin Spine Surg. 2017 [citado 16 Jun 2020];30(7):(E954–E8). Disponible en: https://www.ingentaconnect.com/content/wk/clss/2017/00000030/00000007/art00024

  14. Boonmak P, Boonmak S, Laopaiboon M. Deliberate hypotension with propofol under anaesthesia for functional endoscopic sinus surgery. Cochrane Database of Systematic Reviews. 2016;10:[31 p]. DOI: https://doi.org/10.1002%2F14651858.CD006623.pub3

  15. Moreno DH, Cacione DG, Baptista-Silva JC. Controlled hypotension versus normotensive resuscitation strategy for people with ruptured abdominal aortic aneurysm. Cochrane Database of Systematic Reviews. 2018;6:[17 p]. DOI: https://doi.org/10.1002%2F14651858.CD011664.pub3

  16. Soghomonyan S, Stoicea N, Sandhu GS, Pasterna JJ, Bergese SD. The Role of Permissive and Induced Hypotension in Current Neuroanesthesia Practice. Frontiers in Surgery. 2017;4(1):[10 p]. DOI: https://doi.org/10.3389/fsurg.2017.00001

  17. Lin S, McKenna SJ, Yao C-F, Chen Y-R, Chen C. Effects of Hypotensive Anesthesia on Reducing Intraoperative Blood Loss, Duration of Operation, and Quality of Surgical Field During Orthognathic Surgery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Oral Maxillofac Surg. 2016:[14 p]. DOI: http://dx.doi.org/10.1016/j.joms.2016.07.012

  18. Cushing H. Tumors of the Nervus Acusticus and the Syndrome of the Cerebellopintine Angle. Philadelphia: WB Saunders; 1917.

  19. Guggiari M, Dagreou F, Lienhart A, Gallais S, Mottet P, Philippon J, et al. Use of nitroglycerine to produce controlled decreases in mean arterial pressure to less than 50 mm Hg. British Journal of Anaesthesia. 1985;57(2)(142-7). DOI: https://doi.org/10.1093/bja/57.2.142

  20. Theusinger OM, Spahn DR. Perioperative blood conservation strategies for Major Spine Surgery. Best Practice & Research Clinical Anaesthesiology. 2015:(1-24). DOI: http://dx.doi.org/10.1016/j.bpa.2015.11.007

  21. Roberts S, Dhokia R, Tsirikos A. Blood loss management in major elective orthopaedic surgery. Orthopaedics and Trauma. 2019;33(4):(231-8). DOI: https://doi.org/10.1016/j.mporth.2019.05.005

  22. Awad AA, Ahmed MN. A Comparative Study between Nitroglycerin and Magnesium Sulfate during Shoulder Arthroscopic Surgery in the Beach Chair Position. Med J Cairo Univ. 2019 [citado 4 Jun 2020];87(7):(4449-55). Disponible en: https://mjcu.journals.ekb.eg/article_78264_22bf5bbeddd99ae1b7c64183bc94979f.pdf

  23. Aguirre JA, Etzensperger F, Brada M, Guzzella S, Saporito A, Blumenthal S, et al. The beach chair position for shoulder surgery in intravenous general anesthesia and controlled hypotension: Impact on cerebral oxygenation, cerebral blood flow and neurobehavioral outcome. Journal of Clinical Anesthesia. 2019;53:(40-8). Disponible en: https://doi.org/10.1016/j.jclinane.2018.09.035

  24. Song J-H, Park JW, Lee Y-K, Kim I-S, Nho J-H, Lee K-J, et al. Management of Blood Loss in Hip Arthroplasty: Korean Hip Society Current Consensus. Hip & Pelvis. 2017;29(2):(81-90). Disponible en: http://dx.doi.org/10.5371/hp.2017.29.2.81

  25. Mahmoud HO, Shams MK, Habib AAE-d, Ali AAMAS. A Comparative Study between Magnesium Sulphate and Nitroglycerin with Propranolol in Controlled Hypotensive Anaesthesia during Middle Ear Surgeries. The Egyptian Journal of Hospital Medicine. 2018 [citado 4 Jun 2020];72(10):(5461-5). Disponible en: https://ejhm.journals.ekb.eg/article_11359.html

  26. Bayram A, Ülgey A, Günes I, Ketenci I, Capar A, Esmaoglu A, et al. Comparación entre el sulfato de magnesio y la dexmedetomidina en hipotensión controlada durante cirugía funcional endoscópica de los senos paranasales. Revista Brasileira de Anestesiologia. 2015;65(1):(61-7). DOI: http://dx.doi.org/10.1016/j.bjanes.2014.04.002

  27. Rodrıiguez-Navarro A, Gonzalez-Valverde FM. Unilateral blindness after orthognathic surgery: hypotensive anaesthesia is not the primary cause. Int J Oral Maxillofac Surg. 2017:[4 p]. DOI: http://dx.doi.org/10.1016/j.ijom.2017.07.006

  28. Meng F, Chang Z, An S, Liu W, Qi H, Fang Y, et al. Application of controlled hypotension in cesarean section of pregnant women with high risk hemorrhage. Pak J Pharm Sci. 2018 [citado 3 Jun 2020];31(6):(2885-9). Disponible en: https://pdfs.semanticscholar.org/94f3/7bed3b9103ff9b8e8fb45c1ef3e757ce34a7.pdf

  29. Hughes CG, Boncyk CS, Culley DJ, Fleisher LA, Leung JM, McDonagh DL, et al. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on Postoperative Delirium Prevention. Anesthesia & Analgesia. 2020;130(6):(1572-90). DOI: https://doi.org/10.1213/ANE.0000000000004641

  30. Hirsch J, DePalma G, Tsai TT, Sands LP, Leung JM. Impact of intraoperative hypotension and blood pressure fluctuations on early postoperative delirium after non-cardiac surgery. British Journal of Anaesthesia. 2015 [citado 15 Jun 2020];115:(418-26). Disponible en: http://refhub.elsevier.com/S0007-0912(18)30376-3/sref5

  31. Yang L, Sun DF, Han J, Liu R, Wang LJ, Zhang ZZ. Effects of intraoperative hemodynamics on incidence of postoperative delirium in elderly patients: a retrospective study. Med Sci Monit. 2016 [citado 15 Jun 2020];22:(1093-100). Disponible en: http://refhub.elsevier.com/S0007-0912(18)30376-3/sref33

  32. Jiang X, Chen D, Lou Y, Li Z. Risk factors for postoperative delirium after spine surgery in middle- and old-aged patients. Aging Clin Exp Res. 2017 [citado 15 Jun 2020];29:(1039-44). Disponible en: http://refhub.elsevier.com/S0007-0912(18)30376-3/sref32

  33. Auerbach JD, Kean K, Milby AH, Paonessa KJ, Dormans JP, Newton PO, et al. Delayed Postoperative Neurologic Deficits in Spinal Deformity Surgery. Spine. 2016 [citado 4 Jun 2020];41(3):(E131–E8). Disponible en: https://journals.lww.com/spinejournal/Abstract/2016/02010/Delayed_Postoperative_Neurologic_Deficits_in.11.aspx

  34. Woo JH, Kim YJ, Jeong J-s, Chae JS, Lee YR, Chon JY. Compression stockings reduce the incidence of hypotension but not that of cerebral desaturation events in the beach-chair position: a randomized controlled trial. Korean Journal of Anesthesiology. 2018;71(2):(127-34). DOI: https://doi.org/10.4097/kjae.2018.71.2.127

  35. Ugarte AME, Bollini C. Cirugía de hombro en posición en silla de playa: prevención de complicaciones isquémicas. Revista Chilena de Ortopedia y Traumatología. 2016;57(1):(26-33). DOI: http://dx.doi.org/10.1016/j.rchot.2016.02.002

  36. Murphy GS, Greenberg SB, Szokol JW. Safety of Beach Chair Position Shoulder Surgery: A Review of the Current Literature. Anesthesia & Analgesia. 2019 [citado 4 Jun 2020];129(1):(101-18). Disponible en: https://insights.ovid.com/anesthesia-analgesia/asag/2019/07/000/safety-beach-chair-position-shoulder-surgery/23/00000539

  37. Vasivej T, Sathirapanya P, Kongkamol C. Incidence and risk factors of perioperative stroke in noncardiac, and nonaortic and its major branches surgery. J Stroke Cerebrovasc Dis 2016 [citado 15 Jun 2020];25:(1172-6). Disponible en: http://refhub.elsevier.com/S0007-0912(18)30376-3/sref37

  38. Ramprasath DR, Thirunarayanan V, Rajan A. Lumbar Ischemic Optic Neuropathy Complicating Spine Surgery. A Case Report. Journal of Orthopaedic Case Reports. 2019;9(4):(58-62). DOI: https://doi.org/10.13107/jocr.2019.v09.i04.1480

  39. Manzotti A, Schianchi A, Pace L, Salvadori G, Biazzo A, Cerveri P. Non artheritic bilateral anterior ischaemic optic neuropathy (NAION) as devastating complication following Total Hip Arthroplasty: a case report. Acta Biomed. 2019 [citado 3 Jun 2020];90(4):(583-6). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233790/pdf/ACTA-90-583.pdf

  40. Goyal A, Elminawy M, Alvi MA, Long TR, Chen JJ, Bradley E, et al. Ischemic Optic Neuropathy Following Spine Surgery. Case Control Analysis and Systematic Review of the Literature. Spine. 2019 [citado 4 Jun 2020];44(15):(1087-96). Disponible en: https://journals.lww.com/spinejournal/Abstract/2019/08010/Ischemic_Optic_Neuropathy_Following_Spine_Surgery_.14.aspx

  41. Ahuja S, Mascha EJ, Yang D, Maheshwari K, Cohen B, Ashish K. Khanna, et al. Associations of Intraoperative Radial Arterial Systolic, Diastolic, Mean, and Pulse Pressures with Myocardial and Acute Kidney Injury after Noncardiac Surgery. A Retrospective Cohort Analysis. Anesthesiology. 2020;132(2):(291-306). DOI: https://doi.org/10.1097/ALN.0000000000003048

  42. Gumbert SD, Kork F, Jackson ML, Vanga N, Ghebremichael SJ, Wang CY, et al. Perioperative Acute Kidney Injury. Anesthesiology. 2020;132(1):(180-204). DOI: https://doi.org/10.1097/ALN.0000000000002968

  43. Mathis MR, Naik BI, Freundlich RE, Shanks AM, Heung M, Burns ML, et al. Preoperative Risk and the Association between Hypotension and Postoperative Acute Kidney Injury. Anesthesiology. 2020;132(3):(461-75). DOI: https://doi.org/10.1097/ALN.0000000000003063

  44. Roshanov PS, Sheth T, Duceppe E, Tandon V, Bessissow A, Chan MTV, et al. Relationship between Perioperative Hypotension and Perioperative Cardiovascular Events in Patients with Coronary Artery Disease Undergoing Major Noncardiac Surgery. Anesthesiology. 2019;130(5):(756-66). DOI: https://doi.org/10.1097/ALN.0000000000002654

  45. Sessler DI, Meyhoff CS, Zimmerman NM, Mao G, Leslie K, Vásquez SM, et al. Period-dependent Associations between Hypotension during and for Four Days after Noncardiac Surgery and a Composite of Myocardial Infarction and Death. A Substudy of the POISE-2 Trial. Anesthesiology. 2018;128(2):(317-27). DOI: https://doi.org/10.1097/ALN.0000000000001985

  46. Ugawa R, Takigawa T, Shimomiya H, Ohnishi T, Kurokawa Y, Oda Y, et al. An evaluation of anesthetic fade in motor evoked potential monitoring in spinal deformity surgeries. Journal of Orthopaedic Surgery and Research. 2018;13(227):(1-6). DOI: https://doi.org/10.1186/s13018-018-0934-7

  47. Saponaro-González Á, Pérez-Lorensu PJ, Rivas-Navas E, Fernández-Conejero I. Suprasegmental neurophysiological monitoring with H reflex and TcMEP in spinal surgery. Transient loss due to hypotension. A case report. Clinical Neurophysiology Practice [Internet]. 2016;(1):(54-7). DOI: http://dx.doi.org/10.1016/j.cnp.2016.09.001

  48. Brady KM, Hudson A, Hood R, DeCaria B, Lewis C, Hogue CW. Personalizing the Definition of Hypotension to Protect the Brain. Anesthesiology. 2019:[10 p]. DOI: https://doi.org/10.1097/ALN.0000000000003005

  49. García-Orellana M, Valero R, Fàbregas N, Riva Nd. ¿Es la presión arterial «normal» la presión arterial «óptima» para cada uno de nuestros pacientes? Revista Española de Anestesiología y Reanimación. 2020;67(2):(53-4). DOI: https://doi.org/10.1016/j.redar.2019.11.006

  50. Shah A, Palmer AJR, Klein AA. Strategies to minimize intraoperative blood loss during major surgery. BJS. 2020;107:(e26-e38). DOI: https://doi.org/10.1002/bjs.11393

  51. Liberman JS, Slagle JM, Whitney G, Shotwell MS, Lorinc A, Porterfield E, et al. Incidence and Classification of Nonroutine Events during Anesthesia Care. Anesthesiology. 2020;133(1):(41-52). DOI: https://doi.org/10.1097/ALN.0000000000003336

  52. Wesselink EM, Kappen TH, Torn HM, Slooter AJC, Klei WAv. Intraoperative hypotension and the risk of postoperative adverse outcomes: a systematic review. British Journal of Anaesthesia. 2018:(1-16). DOI: https://doi.org/10.1016/j.bja.2018.04.036

  53. Mizota T, Hamada M, Segawa H. Relationship between intraoperative hypotension and acute kidney injury after living donor liver transplantation: a retrospective analysis. J Cardiothorac Vasc Anesth. 2017 [citado 14 Jun 2020];31:(582-9). Disponible en: http://refhub.elsevier.com/S0007-0912(18)30376-3/sref9

  54. Zhang M, Zhang Y-H, Fu H-Q, Zhang Q-M, Wang T-L. Ulinastatin May Significantly Improve Postoperative Cognitive Function of Elderly Patients Undergoing Spinal Surgery by Reducing the Translocation of Lipopolysaccharide and Systemic Inflammation. Frontiers in Pharmacology [Internet]. 2018;9:[7 p]. DOI: https://doi.org/10.3389/fphar.2018.01007

  55. Sun LY, Wijeysundera DN, Tait GA, Beattie WS. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology. 2015 [citado 15 Jun 2020];123:(515-23). Disponible en: http://refhub.elsevier.com/S0007-0912(18)30376-3/sref3

  56. Hallqvist L, Martensson J, Granath F, Sahlen A, Bell M. Intraoperative hypotension is associated with myocardial damage in noncardiac surgery: an observational study. Eur J Anaesthesiol. 2016 [citado 15 Jun 2020];33:(450-6). Disponible en: http://refhub.elsevier.com/S0007-0912(18)30376-3/sref14

  57. Waes JAv, Klei WAv, Wijeysundera DN, Wolfswinkel LV, Lindsay TF, Beattie WS. Association between intraoperative hypotension and myocardial injury after vascular surgery. Anesthesiology. 2016 [citado 15 Jun 2020];124:(35-44). Disponible en: http://refhub.elsevier.com/S0007-0912(18)30376-3/sref15

  58. Thirumala PD, Huang J, Thiagarajan K, Cheng H, Balzer J, Crammond DJ. Diagnostic Accuracy of Combined Multimodality SSEP and TcMEP Intraoperative Monitoring in Patients with Idiopathic Scoliosis. Spine. 2016:[24 p]. DOI: https://doi.org/10.1097/BRS.0000000000001678

  59. Henderson L, Tsirikos AI. Intraoperative neurophysiological monitoring in spinal deformity surgery. Spine. 2017;31(6):(425-32). DOI: https://doi.org/10.1016/j.mporth.2017.09.015

  60. Segura MJ, Talarico ME, Noel MA. A Multiparametric Alarm Criterion for Motor Evoked Potential Monitoring During Spine Deformity Surgery. Journal of Clinical Neurophysiology. 2017;34(1):(38-48). DOI: https://doi.org/10.1097/WNP.0000000000000323

  61. Holdefer RN, Skinner SA. Motor evoked potential recovery with surgeon interventions and neurologic outcomes: A meta-analysis and structural causal model for spine deformity surgeries. Clinical Neurophysiology. 2020;131:(1556-66]). DOI: https://doi.org/10.1016/j.clinph.2020.03.024

  62. Tsirikos AI, Duckworth AD, Henderson LE, Michaelson C. Multimodal Intraoperative Spinal Cord Monitoring during Spinal Deformity Surgery: Efficacy, Diagnostic Characteristics, and Algorithm Development. Med Princ Pract. 2020;29:(6-17). DOI: https://doi.org/10.1159/000501256

  63. Bell JES, Seifert JL, Shimizu EN, Sucato DJ, Romero-Ortega MI. Atraumatic spine distraction induces metabolic distress in spinal motor neurons. Journal of Neurotrauma. 2017:(1-42). DOI: https://doi.org/10.1089/neu.2016.4779

  64. Bahadır S, Nabi V, Adhikari P, Ayhan S, Acaroglu E. Anterior Spinal Artery Syndrome: A Rare Precedented Reason of Postoperative Plegia After Spinal Deformity Surgery: A Report of Two Cases. World Neurosurgery. 2020:[23 p]. DOI: https://doi.org/10.1016/j.wneu.2020.05.21

  65. Onishi-Kato Y, Nakamura M, Iwanami A, Kato M, Suzuki T, Kosugi S, et al. Perioperative Factors Associated With Chronic Central Pain After the Resection of Intramedullary Spinal Cord Tumor. Clin J Pain. 2017 [citado 3 Jun 2020];33(7):(640-6). Disponible en: https://www.ingentaconnect.com/content/wk/cjpn/2017/00000033/00000007/art00010




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Cubana de Ortopedia y Traumatología. 2020;34