medigraphic.com
SPANISH

Revista ADM Órgano Oficial de la Asociación Dental Mexicana

ISSN 0001-0944 (Print)
Órgano Oficial de la Asociación Dental Mexicana
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 6

<< Back Next >>

Rev ADM 2020; 77 (6)

Analysis of vascular microdensity and growth factors in oral squamous cell carcinoma

Legorreta-Villegas I, Trejo-Remigio DA, Ramírez-Martínez CM, Portilla-Robertson J, Leyva-Huerta ER, Jacinto-Alemán LF
Full text How to cite this article 10.35366/97616

DOI

DOI: 10.35366/97616
URL: https://dx.doi.org/10.35366/97616

Language: Spanish
References: 33
Page: 287-294
PDF size: 534.97 Kb.


Key words:

Growth factors, vascular microdensity, VEGF, FGFR-1.

ABSTRACT

Introduction: Oral squamous cell carcinoma (OSCC) is a malignant epithelial neoplasm that frequently occurs between the fifth and sixth decade of life. Its complex pathogenesis includes the angiogenesis process and the regulation of the tumor microenvironment as mechanisms of tumor progression. Objective: To determine the relationship between the clinical and histological variables of OSCC with the immunoexpression of VEGF, FGF-1, FGFR-1, TGFB-1, TGFBR-II and CD105. Material and methods: Nine cases of OSCC; three well (WD), three moderate (MD) and three poorly differentiated (PD) obtained from the Oral Medicine and Pathology Department, Division of Graduate Studies and Research. The peroxidase immunohistochemistry technique was performed to identify the expression of VEGF, FGF-1, FGFR-1, TGFB-1, TGFBR-II and CD105. The immunoexpression analysis was performed with the ImageJ software. The Kruskal-Wallis and Spearman correlation test were performed (p ‹ 0.05). Results: VEGF immunoexpression was higher in PD OSCC, while FGFR-1 was predominantly positive in WD; FGF, TGFB-1 and TGFBR-II were negative. Vascular microdensity analysis (MVD) indicated a greater number of CD105 positive vessels in WD carcinomas, followed by PD and MD. Conclusion: Considering the results obtained, we can conclude that angiogenesis is a constant phenomenon independent of the degree of differentiation; that during the transformation process of a neoplasm it will require the formation of blood vessels and that this process can be modulated by growth factors such as those analyzed in this work.


REFERENCES

  1. García CB, Gálvez MM, De la hoz RL. Acciones educativas sobre factores de riesgo del cáncer bucal en estudiantes de preuniversitario. Medicent Electron. 2019; 23 (3): 271-277.

  2. Granados-García M, Arrieta-Rodríguez OG, Hinojosa-Gomez J. Tratamiento del cáncer: Oncología médica, quirúrgica y radioterapia. México: El Manual Moderno; 2016.

  3. Sloan P. Squamous cell carcinoma. In: El-Naggar A, Chan J, Grandis J, Takata T, Slootweg J. WHO Classification of Head and Neck Tumours. 4ta ed. IARC: Lyon 2017.

  4. Pérez CR, Cárdenas CE, Mondragón TP, Erazo VA. Biología molecular del cáncer y las nuevas herramientas en oncología. Rev Esp Med Quir. 2017; 22: 171-181.

  5. GCO. Cancer today. [Consulted April 2020] Available in: https://gco.iarc.fr/today/online-analysis-table?v=2018&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=2&statistic=5&prevalence=1&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=5&group_cancer=1&include_nmsc=1&include_nmsc_other=1.

  6. Gallegos HJ. El cáncer de cabeza y cuello. Factores de riesgo y prevención. Cir Ciruj. 2006; 74: 287-293.

  7. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100 (1): 57-70.

  8.  8. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144 (5): 646-674.

  9. Stone WL, Varacallo M. Physiology, growth factor. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020-2018.

  10. Pang X, Tang YL, Liang XH. Transforming growth factor-β signaling in head and neck squamous cell carcinoma: Insights into cellular responses. Oncol Lett. 2018; 16 (4): 4799-4806.

  11. Lu SL, Reh D, Li AG, Woods J, Corless CL, Kulesz-Martin M, Wang XJ. Overexpression of transforming growth factor β1 in head and neck epithelia results in inflammation, angiogenesis, and epithelial hyperproliferation. Cancer Res. 2004; 64: 4405-4410.

  12. Myoken Y, Myoken Y, Okamoto T, Sato JD, Takada K. Immunocytochemical localization of fibroblast growth factor-1 (FGF-1) and FGF-2 in oral squamous cell carcinoma (SCC). J Oral Pathol Med. 1994; 23 (10): 451-456.

  13. Osada AH, Endo K, Kimura Y et al. Addiction of mesenchymal phenotypes on the FGF/FGFR axis in oral squamous cell carcinoma cells. PLoS One. 2019; 14 (11): e0217451.

  14. Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis. 2017; 20 (2): 185-204. doi: 10.1007/s10456-017-9552-y.

  15. Martínez EJ, Herrera LA. Angiogénesis: VEGF/VEGFRs como blancos terapéuticos en el tratamiento contra el cáncer. Cancerología. 2006; 1: 83-96.

  16. Jiménez-Ríos MA, Solares-Sánchez ME. Angiogénesis en cáncer renal. Cancerología. 2006; 1: 113-121.

  17. Miyata Y, Sakai H. Reconsideration of the clinical and histopathological significance of angiogenesis in prostate cancer: Usefulness and limitations of microvessel density measurement. Int J Urol. 2015; 22 (9): 806-815. doi: 10.1111/iju.12840.

  18. Aviso de privacidad integral, Facultad de Odontología, Universidad Nacional Autónoma de México. [Consultado en agosto de 2020] Disponible en: http://www.odonto.unam.mx/sites/default/files/inline-files/1.AP_Integral-Fac_Esc_Inst_Centros%20%20_0.pdf.

  19. Trejo-Remigio DA, Jacinto-Alemán LF, Leyva-Huerta ER, Navarro-Bustos BR, Portilla-Robertson J. Ectodermal and ectomesenchymal marker expression in primary cell lines of complex and compound odontomas: a pilot study. Minerva Stomatol. 2019; 68 (3): 132-141. doi: 10.23736/S0026-4970.19.04166-9.

  20. Kok SH, Chang HH, Tsai JY et al. Expression of Cyr61 (CCN1) in human oral squamous cell carcinoma: an independent marker for poor prognosis. Head Neck. 2010; 32 (12): 1665-1673. doi: 10.1002/hed.21381.

  21. Villanueva-Sánchez FG, Leyva-Huerta ER, Gaitán-Cepeda LA. Cáncer en pacientes Jóvenes (Parte 1): Análisis clínico e histopatológico de carcinoma de células escamosas de la cavidad bucal en pacientes jóvenes. Un estudio descriptivo y comparativo en México. Odontoestomatología. 2016; 18 (27): 44-48.

  22. Meza GG, Muñoz IJ, Páez VC, Cruz LB, Aldape BB. Carcinoma de células escamosas de cavidad bucal en un centro de tercer nivel de atención social en la Ciudad de México. Experiencia de cinco años. Av Odontoestomatol. 2009; 25 (1): 19-28.

  23. Kademani D, Lewis JT, Lamb DH, Rallis DJ, Harrington JR. Angiogenesis and CD34 expression as a predictor of recurrence in oral squamous cell carcinoma. J Oral Maxillofac Surg. 2009; 67 (9): 1800-1805. doi: 10.1016/j.joms.2008.06.081.

  24. Konkimalla VB, Suhas VL, Chandra NR, Gebhart E, Efferth T. Diagnosis and therapy of oral squamous cell carcinoma. Expert Rev Anticancer Ther. 2007; 7 (3): 317-329.

  25. O-charoenrat P, Rhys-Evans PH, Modjtahedi H, Eccles SA. The role of c-erbB receptors and ligands in head and neck squamous cell carcinoma. Oral Oncol. 2002; 38 (7): 627-640.

  26. Astekar M, Joshi A, Ramesh G, Metgud R. Expression of vascular endothelial growth factor and microvessel density in oral tumorigenesis. J Oral Maxillofac Pathol. 2012; 16 (1): 22-26. doi: 10.4103/0973-029X.92968.

  27. Haq F, Sung YN, Park I et al. FGFR1 expression defines clinically distinct subtypes in pancreatic cancer. J Transl Med. 2018; 16 (1): 374. doi: 10.1186/s12967-018-1743-9.

  28. Mariz BALA, Soares CD, Morais TML, Fonseca FP, de Carvalho MGF, Jorge J. Expression of FGF-2/FGFR-1 in normal mucosa, salivary gland, preneoplastic, and neoplastic lesions of the oral cavity. J Oral Pathol Med. 2018; 47 (9): 816-822. doi: 10.1111/jop.12773.

  29. Nguyen PT, Tsunematsu T, Yanagisawa S et al. The FGFR1 inhibitor PD173074 induces mesenchymal-epithelial transition through the transcription factor AP-1. Br J Cancer. 2013; 109 (8): 2248-2258. doi: 10.1038/bjc.2013.550.

  30. Peralta-Zaragoza O, Lagunas-Martínez A, Madrid-Marina V. Factor de crecimiento transformante beta-1: estructura, función y mecanismos de regulación en cáncer. Salud Pública Méx. 2001; 43 (4): 340-351.

  31. Sugerman PB, Joseph BK, Savage NW. Review article: the role of oncogenes, tumour suppressor genes and growth factors in oral squamous cell carcinoma: a case of apoptosis versus proliferation. Oral Dis. 1995; 1 (3): 172-188. doi: 10.1111/j.1601-0825.1995.tb00181.

  32. Jamshidi S, Zargaran M, Baghaei F et al. An immunohistochemical survey to evaluate the expression of CD105 and CD34 in ameloblastoma and odontogenic keratocyst. J Dent (Shiraz). 2014; 15 (4): 192-198.

  33. Kumar S, Ghellal A, Li C et al. Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res. 1999; 59 (4): 856-861.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev ADM. 2020;77