medigraphic.com
SPANISH

Abanico Veterinario

ISSN 8541-3697 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back Next >>

AbanicoVet 2020; 10 (1)

Antibacterial effect of the methanol extract of Salix babylonica against important bacteria in public Health

González-Alamilla E, Rivas-Jacobo M, Sosa-Gutiérrez C, Delgadillo-Ruiz L, Valladares-Carranza B, Rosenfeld-Miranda C, Zaragoza-Bastida A, Rivero-Pérez N
Full text How to cite this article

Language: Spanish
References: 21
Page: 1-11
PDF size: 692.52 Kb.


Key words:

Salix babylonica, characterization, antibacterial effect.

ABSTRACT

The excessive use of antibiotics, has generated resistance of microorganisms to these, have been searched effectives alternatives for treating diseases caused by resistant or multiresistant microorganism, within of these alternatives are plants, which by its content of secondary compounds have antibacterial activity. The aim on the present experiment was characterize and determine the antibacterial activity of methanolic extract of Salix babylonica (SB) against important bacteria in public health. To obtain extract, the maceration technique was used, qualitative and quantitative (gas chromatography) chemical characterization was carried. For antibacterial activity, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) was determined, the characterization of the extract allowed the identification of phenolic compounds, coumarins, lactones, flavonols, quinones, saponins, triterpenes and steroidal compounds, also Thymol (0.5319 mg/mL) and Carvacrol (0.4158 mg/mL). The extract showed the best activity against Bacillus. subtilis (MIC: 12.5 mg/mL and WBC: 25 mg/mL), Listeria. monocytogenes and Staphylococcus. aureus (MIC: 25 mg/mL and MBC: 50 mg/mL). It is concluded that the methanolic extract of SB can be an alternative for the treatment of diseases produced by resistant or multiresistant bacteria to antibiotics.


REFERENCES

  1. ALÓS JI. 2014. Resistencia bacteriana a los antibóticos: una crisis global. Enfermedades Infecciosas y Microbiologias Clinica. 33(10):692–699. http://dx.doi.org/10.1016/j.eimc.2014.10.004

  2. BALOUIRI M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. 6(2):71-79. https://doi.org/10.1016/j.jpha.2015.11.005.

  3. BAÑUELOS-VALENZUELA R, Delgadillo L, Chairez F, Delgadillo O, Meza-López C. 2018. Composición química y FTIR de extractos etanólicos de Larrea tridentata, Origanum vulgare, Artemisa ludoviciana y Ruta graveolens Agrociencia. 52(3): 309-321. https://dialnet.unirioja.es/servlet/articulo?codigo=6423180.

  4. BERRIDGE MV, Herst PM, Tan AS. 2005. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology Annual Review. 11:127-152. https://doi.org/10.1016/s1387-2656(05)11004-7.

  5. BORGES A, Ferreira C, Saavedra MJ, Simoes, M. 2013. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance. 19(4): 256-265. https://doi.org/10.1089/mdr.2012.0244.

  6. CLSI (Clinical and Laboratory Standards Institute). 2012. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard- Ninth Edition. Pp. 88. USA.

  7. HERNÁNDEZ-ALVARADO J, Zaragoza-Bastida A, López-Rodríguez G, Peláez-Acero A, Olmedo-Juárez A, Rivero-Perez N. 2018. Actividad antibacteriana y sobre nematodos gastrointestinales de metabolitos secundarios vegetales: enfoque en Medicina Veterinaria. Abanico Veterinario. 8(1):14-27. http://dx.doi.org/10.21929/abavet2018.81.1.

  8. KAEWPIBOON C, Lirdprapamongkol K, Srisomsap C, Winayanuwattikun P, Yongvanich T, Puwaprisirisan P, Svasti J, Assavalapsakul W. 2012. Studies of the in vitro cytotoxic, antioxidant, lipase inhibitory and antimicrobial activities of selected Thai medicinal plants. BMC Complementary and Alternative Medicine. 12(1):217. https://doi.org/10.1186/1472- 6882-12-217.

  9. KAYE KS, Engemann JJ, Fraimow HS, Abrutyn E. 2004. Pathogens resistant to antimicrobial agents: epidemiology, molecular mechanisms, and clinical management. Infectious disease clinics of North America. 18(3):467-511. https://doi.org/10.1016/j.idc.2004.04.003.

  10. KHAN UA, Rahman H, Niaz Z, Qasim M, Khan J, Tayyaba, Rehman B. 2013. Antibacterial activity of some medicinal plants against selected human pathogenic bacteria. European Journal of Microbiology and Immunology. 3(4): 272– 274. https://doi.org/10.1556/EuJMI.3.2013.4.6

  11. LOZANO R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al., 2012.Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. 2012. The Lancet. 380(9859):2095-2128. https://doi.org/10.1016/S0140-6736(12)61728-0 12. MAGI G, Marini E, Facinelli B. 2015. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group

  12. A Streptococci. Frontiers in Microbiology. 6:165. https://doi.org/10.3389/fmicb.2015.00165.

  13. MOTHANA RA, Lindequist U, Gruenert R, Bednarski PJ. 2009. Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra. BMC Complementary and Alternative Medicine. 9: 7. https://doi.org/10.1186/1472-6882-9-7.

  14. NDHLALA AR, Ghebrehiwot HM, Ncube B, Aremu AOJ, Gruz M, Subrtova J, Van Staden A. 2015. Antimicrobial, anthelmintic activities and characterization of functional phenolic acids of Achyranthes aspera linn, a medicinal plant used for the treatment of wounds and ringworm in east Africa. Frontiers in Pharmacology. 6:274. https://doi.org/10.3389/fphar.2015.00274.

  15. RENISHEYA JJMT, Johnson M, Mary UM, Arthy A. 2011. Antibacterial activity of ethanolic extracts of selected medicinal plants against human pathogens. Asian Pacific Journal of Tropical Biomedicine.1(1):S76-S78. https://doi.org/10.1016/S2221-1691(11)60128-7.

  16. RIVERO-PEREZ N, Ayala-Martínez M, Zepeda-Bastida A, Meneses-Mayo M, Ojeda- Ramírez D. 2016. Anti-inflammatory effect of aqueous extracts of spent Pleurotus ostreatus substrates in mouse ears treated with 12-O-tetradecanoylphorbol-13-acetate. Indian Journal of Pharmacology. 48(2):141-144. https://dx.doi.org/10.4103%2F0253- 7613.178826.

  17. SALEM AFZ, Salem MZ, González-Ronquillo M, Camacho LM, Cipriano M. 2011. Major chemical constituents of Leucaena leucocephala and Salix babylonica leaf extracts. Journal of Tropical Agriculture. 49: 95-98. http://jtropag.kau.in/index.php/ojs2/article/view/244

  18. SULAIMAN GM, Hussien NN, Marzoog TR, Awad, HA. 2013. Phenolic content, antioxidant, antimicrobial and cytotoxic activities of ethanolic extract of Salix alba. American Journal of Biochemistry and Biotechnology. 9(1): 41-46. https://thescipub.com/PDF/ajbbsp.2013.41.46.pdf.

  19. WAHAB GA, Sallam A, Elgaml A, Lahhloub M, Afifi MS. 2018. Antioxidant and antimicrobial activities of Salix babylonica extracts. World Journal of Pharmaceutical Sciences. 6(4): 1-6. http://www.wjpsonline.org/.

  20. WHO (World Health Organization). 2017. Antimicrobial resistance. https://www.who.int/antimicrobial-resistance/en/

  21. WIEGAND I, Hilpert K, Hancock REW. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols. 3(2):163-175. https://doi.org/10.1038/nprot.2007.521.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

AbanicoVet. 2020;10