medigraphic.com
SPANISH

Abanico Veterinario

ISSN 8541-3697 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back Next >>

AbanicoVet 2020; 10 (1)

Use of fish waste and pineapple peel to produce biological silage

Ramírez-Ramírez J, Loya-Olguín J, Ulloa J, Rosas-Ulloa P, Gutiérrez-Leyva R, Silva-Carrillo Y
Full text How to cite this article

Language: Spanish
References: 22
Page: 1-12
PDF size: 523.61 Kb.


Key words:

Fish waste, pineapple peel, biological silage, ruminant feeding.

ABSTRACT

Six treatments were formulated to make silages with fish wastes, corn stubble, molasses, pineapple peel (PP) [15, 30 and 45%] and inoculum Lactobacillus sp. or Lactobacillus B2. The silages of each treatment were made in triplicate and incubated at 30 °C for 0, 2, 4, 7 and 14 days in order to evaluate the acidification under a 3 x 2 x 5 factorial design. The chemical composition and in vitro dry matter digestibility (IVDMD) were determined to the silages at end of fermentation. The highest acidification (p‹0.05) was presented in the treatments with PP 15 and 30% and Lactobacillus B2 for 7 days. The highest dry matter content (39.3%) (p‹0.05) was obtained with 15% of PP and the crude protein was from 26.5 to 31% without significant difference. The highest concentration of lipids (9.85%) was present in the treatments with PP 30 and 45% and Lactobacillus B2. Detergent fiber fractions decreased with increasing PP level and the highest IVDMD (82.9%) occurred in silages when using Lactobacillus B2, regardless of PP level. The silages obtained are an alternative in ruminant feeding.


REFERENCES

  1. AOAC (ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS). 2005. Official Methods of Analysis of the AOAC. 18ed. AOAC International, Gaithersburg, MD, USA. ISBN 0-935584-77-3. http://www.eoma.aoac.org/

  2. CASTILLO GWE, Sánchez SHA, Ochoa MGM. 2019. Evaluación del ensilado de residuos de pescado y de cabeza de langostino fermentado con Lactobacillus fermentus aislado de cerdo. Revista de investigaciones Veterinarias del Perú. 30(4):1456-1469. ISSN: 1609-9117. http://dx.doi.org/10.15381/rivep.v30i4.17165

  3. DAMASCENO KA, Alvarenga CA, Dos Santos G, Lacerda L, Bastianello PC, Leal P, Arantes-Pereira L. 2016. Development of cereal bars containing pineapple peel flour (Annanas Comosus L. Merril). Journal of Food Quality. 39:417-424. ISSN: 1745-4557. https://doi.org/10.1111/jfq.12222

  4. FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura) 2018. El estado mundial de la pesca y la acuicultura 2018. Cumplir los objetivos de desarrollo sostenible. Roma. Licencia: CC BY-NC- SA 3.0 IGO. Pp. 2. ISBN 978-92-5-130688-8. http://www.fao.org/3/I9540ES/i9540es.pdf

  5. FAOSTAT (Statistical Database of the Food and Agriculture Organization of the United Nations). 2018. http://www.fao.org/faostat/es/#data/QC

  6. GERON LJV, Zeoula LM, Vidotti RM, Matsushita M, Kazama R, Caldas SF, Fareli F. 2007. Chemical characterization, dry matter and crude protein ruminal degradability and in vitro intestinal digestion of acid and fermented silage from tilapia filleting residue. Animal Feed Science and Technology. 136:226-239. ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2006.09.006

  7. GHALY AE, Ramakrishnan VV, BroOKS MS, Budge SM, Dave D. 2013. Fish Processing Wastes as a Potential Source of Proteins, Amino Acids and Oils: A Critical Review. Journal of Microbial and Biochemical Technology. 5(4):107-129. ISSN: 1948-5948. http://dx.doi.org/10.4172/1948-5948.1000110

  8. GHOSH PR, Fawcett D, Sharma SB, Poinern GEJ. 2016. Progress towards sustainable utilization and management of food wastes in the global economy. International Journal of Food Science. 2016:1-22. ISSN: 2314-5765. http://downloads.hindawi.com/journals/ijfs/2016/3563478.pdf

  9. JINI R, Swapna HC, Amit KR, Vrinda R, Halami PM, Sachindra NM, Bhaskar N. 2011. Isolation and characterization of potential lactic acid bacteria (LAB) from freshwater fish processing wastes for application in fermentative utilization of fish processing waste. Brazilian Journal of Microbiology. 42:1516-1525. ISSN: 1517-8382. https://doi.org/10.1590/S1517-83822011000400039

  10. KETNAWA S, Chaiwut P, Rawdkuen S. 2012. Pineapple wastes: A potential source for bromelain extraction. Food and Bioproducts Processing, 90:385.391. ISSN: 0960-3085. https://doi.org/10.1016/j.fbp.2011.12.006

  11. LAND M, Vanderperren E, Raes K. 2017. The effect of raw material combination on the nutritional composition and stability of four types of autolyzed fish silage. Animal Feed Science and Technology. 234:284-294. ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2017.10.009

  12. OLSEN RL, Toppe J. 2017. Fish silage hydrolysates: No only a feed nutrient, but also a useful feed additive. Trends in Food Science & Technology. 66:93-97. ISSN: 0924- 2244. https://doi.org/10.1016/j.tifs.2017.06.003

  13. OZYURT G, Boga M, UÇar Y, Boga EK, Polat A. 2017. Chemical, bioactive properties and in vitro digestibility of spray-dried fish silages: Comparison of two discard fish (Equulites klunzingeri and Carassius gibelio) silages. Aquaculture nutrition. 1-8. ISSN: 1365-2095. https://onlinelibrary.wiley.com/doi/abs/10.1111/anu.12636

  14. RAMÍREZ-RAMÍREZ JC, Huerta S, Arias L, Prado A, Shirai K. 2008. Utilization of shrimp by-catch and fish wastes by lactic acid fermentation and evaluation of degree of protein hydrolysis and in vitro digestibility. Revista Mexicana de Ingeniería Química. 7(3):195-204. ISSN 1665-2738. http://www.scielo.org.mx/pdf/rmiq/v7n3/v7n3a3.pdf

  15. RAMÍREZ-RAMÍREZ JC, Ibarra JI, Gutiérrez R, Ulloa JA, Rosas P. 2016. Use of biological fish silage in broilers feed: Effect on growth performance and meat quality. Journal of Animal and Plant Sciences. 27(3):4293-4304. ISSN: 2071-7024. https://m.elewa.org/Journals/wp-content/uploads/2016/02/4.Ramirez.pdf

  16. RAMÍREZ-RAMÍREZ JC, Gutiérrez R, Ulloa JA, Rosas P, Torres G, Bautista PU. 2018. Utilization of fish and mango wastes on biological silage production. Current Research in Agricultural Sciences. 5(1):6-14. ISSN: 2312-6418. http://www.conscientiabeam.com/pdf-files/agr/68/CRAS-2018-5(1)-6-14.pdf

  17. RENUKA V. Zynudheen AA, Panda SK, Ravishankar CNR. 2016. Nutritional evaluation of processing discard from tiger tooth croaker, Otholites ruber. Food Science and Biotechnology. 25(5):1251-1257. ISSN: 2092-6456. https://doi.org/10.1007/s10068- 016-0198-0

  18. SMICHI N, Kharrat N, Achouri N, Gargouri Y, Miled N, Fendri A. 2016. Physicochemical characterization and nutritional quality of fish by-products: in vitro oils digestibility and synthesis of flavour esters. Journal of Food Processing & Technology. 7(7)602. ISSN: 2157-7110. https://www.longdom.org/archive/jfpt-volume-7-issue-7-year- 2016.html

  19. STATISTICA software, version 7.1. https://softadvice.informer.com/Statistica_7.1_Free_Download.html

  20. TILLEY MA, Terry RA. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science. 18(2):104–111. ISSN: 1365-2494. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

  21. VAN SOEST, PJ, Robertson JB, Lewis, BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74(10):3583-3597. ISSN: 0022-0302. https://www.journalofdairyscience.org/article/S0022-0302(91)78551-2/pdf

  22. VIDOTTI RM, Bertoldo MT, GonÇalves GS. 2011. Characterization of the oils present in acid and fermented silage produced from Tilapia filleting residue. Revista Brazileira de Zootecnia. 40(2):240-244. ISSN: 1806-9290. https://doi.org/10.1590/S1516- 35982011000200002




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

AbanicoVet. 2020;10