medigraphic.com
SPANISH

Abanico Veterinario

ISSN 8541-3697 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back Next >>

AbanicoVet 2020; 10 (1)

Zinc methionine supplementation effect on performance and intestinal epithelium morphology in pigs reared in hot or cool environments

Romo-Valdez J, Barajas-Cruz R, Enríquez-Verdugo I, Silva-Hidalgo G, Güémez-Gaxiola H, Romo-Rubio J
Full text How to cite this article

Language: Spanish
References: 42
Page: 1-17
PDF size: 554.38 Kb.


Key words:

Pig, Zinc methionine, Intestinal epithelium, Productive response.

ABSTRACT

To determine the effect of zinc-methionine supplementation during the gestation-lactation (GL) and growingfinishing (DF) period in the performance and during DF on the epithelium intestinal morphology of fattening pigs under hot and cool condition, two experiments were carried out. The experiment (Exp.) 1 was carried out during the hot season and Exp. 2 during the cool season of the year. 192 pigs were used (96 per Exp.) with an average age of 79 days and 26.39±SD4.97 kg of body weight, piglets of sows that received or not feed added with 100 mg of Zn/kg, from 80 to 114 days of gestation and during 21 d of lactation (LG). In each experiment, the pigs were assigned to one of four treatments in a completely random design with a 2 x 2 factorial arrangement. The treatments were: T1 (control, n = 24), non-supplemented mothers-nonsupplemented pigs; T2 (Zn FD; n = 24), non-supplemented mothers, pigs supplemented with 100 mg of Zn/kg feed; T3 (Zn LG; n = 24), supplemented mothers – non-supplemented pigs and, T4 (Zn LG + Zn DF; n = 24), supplemented mothers + supplemented pigs. Supplementation with 100 mg of Zn / kg of feed during GL and DF did not modify the productive performance of the pigs during the study period. However, the villus height: crypt depth ratio was higher (p ‹0.01) in pigs supplemented with Zn (3.36 vs. 2.77) during the hot season. An interaction (p ‹0.02) between climate and zinc methionine supplementation was observed in the depth of the crypt and the V: C ratio. Supplementation during GL tended (P = 0.06) to lower the mortality of developing-finishing pigs in the cool season. According to results, it is concluded that the addition of zinc methionine to the diet improves the integrity of the intestinal epithelium in developing-finishing pigs reared under a hot environment, and supplementation during the gestation and lactation period reduces mortality during fattening.


REFERENCES

  1. AL MASRI S, Hünigen H, Al Aiyan A, Rieger J, Zentek J, Richardson K, Plendl J. 2015. Influence of age at weaning and feeding regimes on the postnatal morphology of the porcine small intestine. Journal Swine Health and Production. 23(4):186–203. ISSN: 1537-209X. http://dx.doi.org/10.13140/RG.2.1.1806.5043

  2. BOUWHUIS MA, Sweeney T, Mukhopadhya A, Thornton K, McAlpine PO and O’Doherty JV. 2016. Zinc methionine and laminarin have growth-enhancing properties in newly weaned pigs influencing both intestinal health and diarrhoea occurrence. Journal of Animal Physiology and Animal Nutrition. 101(6):1273-1285. ISSN: 0931-2439. http://dx.doi.org/10.1111/jpn.12647

  3. CHAND N, Naz S, Khan A, Khan S, Khan RU. 2014. Performance traits and immune response of broiler chicks treated with zinc and ascorbic acid supplementation during cyclic heat stress. International Journal of Biometeorology. 58(10):2153–2157. ISSN: 1432-1254. http://dx.doi.org/10.1007/s00484-014-0815-7

  4. CHASAPIS CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. 2012. Zinc and human health: an update. Archives of Toxicology. 86(4):521–534. ISSN: 0340-5761. http://dx.doi.org/10.1007/s00204-011-0775-1

  5. CIAD. Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Culiacán. Sistema Estadístico del Clima Automatizado de Sinaloa. 2015. http://187.141.135.166/CIAD/DatosPorPeriodoNuevo.aspx

  6. CIAD. Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Culiacán. Sistema Estadístico del Clima Automatizado de Sinaloa. 2016. http://187.141.135.166/CIAD/DatosPorPeriodoNuevo.aspx

  7. CRUZ JBF, Soares HF. 2011. Uma revisão sobre o zinco. Ensaios Ciência Ciências Biológicas Agrárias Saúde. 15: 207–222. ISSN: 1415-6938. https://www.redalyc.org/pdf/260/26019329014.pdf

  8. ESHEL GM, Safar P, Stezoski W. 2001. The role of thegut in the pathogenesis of death due to hyperthermia. The American Journal of Forensic Medicine and Pathology. 22(1):100–104. ISSN: 0195-7910. http://dx.doi.org/10.1097/00000433-200103000-00022

  9. LAGANA C, Ribeiro AML, Kessler A, Kratz LR, Pinheiro CC. 2007. Effect of the supplementation of vitamins and organic minerals on the performance of broilers under heat stress. Revista Brasileira de Ciencia Avícola. 9(1):01–06. ISSN: 1806-9061. http://dx.doi.org/10.1590/S1516-635X2007000100006

  10. LAMBERT GP, Gisolfi CV, Berg DJ, Moseley PL, Oberley LW, Kregel KC. 2002. Selected contribution: Hyperthermia-induced intestinal permeability and the role of oxidative and nitrosative stress. Journal Applied of Physiology. 92(4):1750–1761. ISSN: 1522-1601. http://dx.doi.org/10.1152/japplphysiol.00787.2001

  11. LAMBERT GP. 2009. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. Journal of Animal Science. 87:E101–E108. ISSN: 1525-3163. http://dx.doi.org/10.2527/jas.2008-1339

  12. LI BT, van Kessel AG, Caine WR, Huang SX, Kirkwood RN. 2001. Small intestinal morphology and bacterial populations in ileal digesta and feces of newly weaned pigs receiving a high dietary level of zinc oxide. Canadian Journal of Animal Science. 81(4):511–516. ISSN: 0008-3984. https://doi.org/10.4141/A01-043

  13. LI Y, Cao Y, Zhou X, Wang F, Shan T, Li Z, Xu W, Li C. 2015. Effects of zinc sulfate pretreatment on heat tolerance of Bama miniature pig under high ambient temperature. Journal of Animal Science. 93:3421–3430. ISSN: 1525-3163. http://dx.doi.org/10.2527/jas.2015-8910

  14. LONG L, Chen J, Zhang Y, Liang X, Ni H, Zhang B, Yin Y. 2017. Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets. Plos ONE. 12(8):e0182550. ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0182550

  15. MADER TL, Davis MS, Brown-Brandl T. 2006. Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science. 84:712-719. ISSN: 0021-8812. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1622&context=animalscifacpu b

  16. 01:19 p.m. 28/01/2021 16. MANI V, Weber TE, Baumgard LH, Gabler NK. 2012. Growth and development symposium: Endotoxin, inflammation, and intestinal function in livestock. Journal of animal Science. 90 (5):1452–1465. ISSN: 0021-8812. http://dx.doi.org/10.2527/jas.2011-4627

  17. MAO X, Qi S, Yu B, He J, Yu J, Chen D. 2013. Zn (2+) and L-isoleucine induce the expressions of porcine beta-defensins in IPEC-J2 cells. Molecular Biology Reports. 40(2): 1547–1552. ISSN: 1573-4978. http://dx.doi.org/10.1007/s11033-012-2200-0

  18. MARET W. 2013. Zinc biochemistry: From a single zinc enzyme to a key element of life. Advances in Nutrition. 4(1):82−91. ISSN: 2161-8313. http://dx.doi.org/10.3945/an.112.003038.

  19. MARREIRO DN, Cruz KJC, Morais JBS, Beserra JB, Severo, de Oliveira ARS. 2017. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants, 6 (2): 24. ISSN: 2076-3921. http://dx.doi.org/10.3390/antiox6020024

  20. McDOWELL LR. 2003. Zinc. En Minerals in Animal and Human Nutrition. 2nd ed. Elsevier, Amsterdam, The Netherlands. Pp. 644. ISBN: 978-0-444-51367-0; https://www.sciencedirect.com/book/9780444513670/minerals-in-animal-and-humannutrition

  21. MING-ZHE L, Jie-Ting H, Yi-Hao T, Syuan-Yian M, Chao-Ming F, Tu-Fa L. 2016. Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Animal Science Journal. 87: 1379– 1385. ISSN: 1740-0929. http://dx.doi.org/10.1111/asj.12579

  22. NOM-033. 2014. NOM-033-SAG. ZOO-2014. Métodos para dar muerte a los animales domésticos y silvestres, 26. https://www.gob.mx/profepa/documentos/norma-oficialmexicana- nom-033-sag-zoo-2014-metodos-para-dar-muerte-a-los-animalesdomesticos- y-silvestres

  23. NRC (National Research Council). 2012. Nutrient requirements of swine. 11th rev. ed. Natl. Acad. Press, Washington, DC. USA.Pp. 420. ISBN: 978-0-309-22423-9; https://www.nap.edu/catalog/13298/nutrient-requirements-of-swine-eleventh-revisededition

  24. PAYNE RL, Bidner TD, Fakler TM and LL Southern. 2006. Growth and intestinal morphology of pigs from sows fed two zinc sources during gestation and lactation. Journal of Animal Science. 84:2141-214. ISSN: 0021-8812, https://dx.doi.org/10.2527/jas.2005- 627

  25. PEARCE SC, Gabler NK, Ross JW, Escobar J, Patience JF, Rhoads RP, Baumgard LH. 2013a. The effects of heat stress and plane of nutrition on metabolism in growing pigs. Journal of Animal Science. 91:2108–2118. ISSN: 1525-3163. http://dx.doi.org/10.2527/jas.2012-5738

  26. PEARCE SC, Mani V, Boddicker RL, Johnson JS, Weber TE, Ross JW, Rhoads RP, Baumgard LH, Gabler NK. 2013b. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLoS ONE. 8:E70215. ISSN: 1932- 6203. http://dx.doi.org/10.1371/journal.pone.0070215

  27. PEARCE SC, Mani V, Weber TE, Rhoads RP, Patience JF, Baumgard LH, Gabler NK. 2013c. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs. Journal of Animal Science. 91:5183–5193. ISSN: 1525-3163. http://dx.doi.org/10.2527/jas.2013-6759

  28. PEARCE SC, Sanz-Fernandez MV, Torrison J, Wilson ME, Baumgard LH, Gabler NK. 2015. Dietary organic zinc attenuates heat stress–induced changes in pig intestinal integrity and metabolism. Journal of Animal Science. 93:4702–4713. ISSN: 1525-3163. http://dx.doi.org/10.2527/jas2015-9018

  29. PEI X, Xiao Z, Liu L, Wang G, Tao W, Wanga M, Zou J, Leng D. 2018. Effects of Dietary Zinc Oxide Nanoparticles Supplementation on Growth Performance, Zinc Status, Intestinal Morphology, Microflora Population, and Immune Response in Weaned Pigs Running. Journal of the Science of Food and Agriculture. 99(3):1366-1374. ISSN: 1097- 0010. http://dx.doi.org/10.1002/jsfa.9312

  30. PROPHET E, Mills B, Arrington J, Sobón L. 1995. Métodos histotecnológicos.Instituto de Patología de las Fuerzas Armadas de los Estados Unidos de América. Washington DC. Registro de Patología de los Estados Unidos de América (ARP) e Instituto de Patología de las Fuerzas Armadas de los Estados Unidos de América (AFIP). ISBN: 1881041212 9781881041214; https://www.worldcat.org/title/metodoshistotecnologicos/ oclc/630264753

  31. RAKHSHANDEH A, Dekkers JCM, Kerr BJ, Weber TE, English J, Gabler NK. 2012. Effect of immune system stimulation and divergent selection for residual feed intake on digestive capacity of the small intestine in growing pigs. Journal of animal Science. 90(Suppl. 4):233–235. ISSN: 0021-8812. http://dx.doi.org/10.2527/jas.53976

  32. RENAUDEAU D, Gourdine JL, St-Pierre NR. 2011. A meta-analysis of the effects of high ambient temperature on growth performance of growing finishing pigs. Journal of Animal Science. 89(7):2220–2230. SSN: 1525-3163. http://dx.doi.org/10.2527/jas.2010-3329

  33. RICHARDS JD, Fisher PM, Evans JL, Wedekind KJ. 2015. Greater bioavailability of chelated compared with inorganic zinc in broiler chicks in the presence or absence of elevated calcium and phosphorus. Open Access Animal Physiology. 7:97-109. ISSN: 1179-2779. https://doi.org/10.2147/OAAP.S83845

  34. ROMO JM, Romo JA, Barajas R, Enríquez I, Silva G, Montero A. 2017. Efecto del consume de zinc orgánico en la respuesta productiva de la cerda y su camada. Abanico veterinario. 7(2):43-59. ISSN 2448-6132. http://dx.doi.org/10.21929/abavet2017.72.4

  35. SANZ-FERNANDEZ MV, Pearce SC, Gabler NK, Patience JF, Wilson ME, Socha MT, Torrison JL, Rhoads RP, Baumgard LH. 2014. Effects of supplemental zinc amino acid complex on gut integrity in heat-stressed growing pigs. Animal. 8:43–50. ISSN: 1751- 732X. http://dx.doi.org/10.1017/S1751731113001961

  36. SCHLEGEL P, Sauvant D, Jondreville C. 2013. Bioavailabiliy of zinc sources and their interaction with phytates in broilers and piglets. Animal. 7(1):47–59. ISSN: 1751-732X. http://dx.doi.org/10.1017/S1751731112001000

  37. STEEL GD y Torrie JH. 1985. Bioestadística: Principios y Procedimientos. (2da. Ed.) McGraw-Hill, México, DF. Pp. 624. ISBN: 968-451495-6; https://www.academia.edu/35066774/Steel_Robert_G_- _Bioestadistica_Principios_Y_Procedimientos_2ed

  38. ST-PIERRE NR, Cobanov B, Schnitkey G. 2003. Economic losses from heat stress by US livestock industries. Journal of Dairy Science. 86(Suppl):E52–E77. ISSN: 0022-0302. https://doi.org/10.3168/jds.S0022-0302(03)74040-5

  39. TANG M, Laarveld B, Van Kessel AG, Hamilton DL, Estrada A, Patience JF. 1999. Effect of segregated early weaning on postweaning small intestinal devel¬opment in pigs. Journal of Animal Science. 77(12):3191–3200. ISSN: 1525-3163. https://doi.org/10.2527/1999.77123191x

  40. WAEYTENS A, De Vos M, Laukens D. 2009. Evidence for a Potential Role of Metallothioneins in Inflammatory Bowel Diseases. Mediators of Inflammation. Article ID 729172: 9 pages. ISSN: 0962-9351. http://dx.doi.org/10.1155/2009/729172

  41. WANG X, Valenzano MC, Mercado JM, Zurbach EP, Mullin JM. 2013. Zinc supplementation modifies tight junctions and alters barrier function of CACO-2 human intestinal epithelial layers. Digestive Diseases and Sciences. 58(1): 77–87. ISSN: 0163- 2116. http://dx.doi.org/10.1007/s10620-012-2328-8

  42. ZHANG B, Guo Y. 2009. Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. The British Journal of Nutrition. 102:687–693. ISSN: 1475-2662. http://dx.doi.org/10.1017/S0007114509289033




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

AbanicoVet. 2020;10