medigraphic.com
SPANISH

NCT Neumología y Cirugía de Tórax

ISSN 2594-1526 (Electronic)
Antes Revista del Instituto Nacional de Enfermedades Respiratorias

Ver anteriores al 2010

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • Policies
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 4

<< Back Next >>

Neumol Cir Torax 2020; 79 (4)

Effect of L-arginine pretreatment on an experimental model of oleic acid-induced acute respiratory distress syndrome

Hernández-Jiménez C, Baltazares-Lipp M, Olmos-Zúñiga JR, Gaxiola-Gaxiola M, Guzmán-Cedillo AE, Silva-Martínez M, Jasso-Victoria R
Full text How to cite this article 10.35366/97966

DOI

DOI: 10.35366/97966
URL: https://dx.doi.org/10.35366/97966

Language: Spanish
References: 52
Page: 236-247
PDF size: 483.00 Kb.


Key words:

Pulmonary edema, nitric oxide donors, pulmonary endothelium, vasoconstriction.

ABSTRACT

Introduction: Acute respiratory distress syndrome (ARDS) in the endothelium causes vasoconstriction, adhesion of inflammatory cells and development of pulmonary edema, pulmonary hypertension and thrombosis. This endothelial damage lowers the production of nitric oxide (NO) and increases the expression of endothelin-1 (ET-1). The aim of this study was to evaluate the effect of pretreatment with L-arginine in OA-induced ALI. Material and methods: Hemodynamic, gasometric, microscopic, immunohistochemical and plasma concentration of ET-1 and ET-1 y ETB were analyzed in an experimental model of AO-induced ARDS. The dogs were divided into three study groups: I (n = 6), control; II (n = 6), OA-induced ARDS at an IV dose of 0.09 mL/kg, untreated, and III (n = 6), pretreatment with L-arginine at 0.125 g/min/IV in 250 mL of 0.09% saline and OA-induced ARDS. Results: The hemodynamic, blood gas and gravimetric findings revealed that groups II and III developed ARDS. Intrapulmonary shunt increased in groups II and III (p < 0.05, ANDEVA Dunnett). PaO2/FiO2 decreased in groups II and III with a significant difference with group I (p < 0.05, ANDEVA MR Dunnett). The group III showed less inflammatory infiltrate and edema in lung tissue. Plasma levels of ET-1 showed a higher value for group III. The in situ expression of ET-1 and ETB was higher for group II than for group III. Conclusions: Pretreatment with L-arginine in an experimental model of AO-induced acute SIRA attenuated hypoxic pulmonary vasoconstriction (HPV) leading to deterioration in intrapulmonary shunting. However, the edema and inflammatory infiltrate in the tissue decreased, therefore, in this model you can only consider a potential attenuating effect on lung inflammation during the acute phase by L-arginine.


REFERENCES

  1. Piatti PM, Fragasso G, Monti LD, Setola E, Lucotti P, Fermo I. Acute intravenous L-arginine infusion decreases endothelin-1 levels and improves endothelial function in patients with angina pectoris and normal coronary arteriograms: correlation with asymmetric dimethylarginine levels. Circulation. 2003;107(3):429-436. https://doi.org/10.1161/01.cir.0000046489.24563.79

  2. Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Nitric oxide and endothelial dysfunction. Crit Care Clin. 2020;36(2):307-321. https://doi.org/10.1016/j.ccc.2019.12.009

  3. Guzmán Cedillo AE, Olmos Zúñiga JR, Jasso Victoria R, García Torrentera R, Gaxiola Gaxiola M, Silva Martínez M, et al. Efecto de tres modos ventilatorios como único soporte en un modelo experimental de inflamación sistémica por lipopolisacárido sobre la hemodinamia, fisiología pulmonar e histología. Neumol Cir Torax. 2020;79(1):37-49. doi: 10.35366/93428.

  4. Luiking YC, Ten Have GA, Wolfe RR, Deutz NE. Arginine de novo and nitric oxide production in disease states. Am J Physiol Endocrinol Metab. 2012;303(10):E1177-E1189. https://doi.org/10.1152/ajpendo.00284.2012

  5. Rosenthal DM, Carrott WP, Patel J, Kiraly L, Martindale RG. Parenteralor enteral arginine supplementation safety and efficacy. J Nutr. 2016;146(12):2594S-600S. https://doi.org/10.3945/jn.115.228544

  6. Sims CA, Holena D, Kim P, Pascual J, Smith B, Martin N, et al. Effect of low-dose supplementation of arginine vasopressin on need for blood product transfusions in patients with trauma and hemorrhagic shock: a randomized clinical trial. JAMA Surg. 2019;154(11):994-1003. https://doi.org/10.1001/jamasurg.2019.2884

  7. Barton M, Yanagisawa M. Endothelin: 30 years from discovery to therapy. Hypertension. 2019;74(6):1232-1265. https://doi.org/10.1161/hypertensionaha.119.12105

  8. Guimarães CL, Trentin PG, Rae GA. Endothelin ET(B) receptor-mediated mechanisms involved in oleic acid-induced acute lung injury in mice. Clin Sci (Lond). 2002;103 Suppl 48:340S-344S. https://doi.org/10.1042/cs103s340s

  9. Hernández JC, Olmos ZJR, Jasso VR, Baltazares LM, Gaxiola GM, Villalba CJ. Expresión de endotelina-1 y receptores para endotelina ETA y ETB en arteria pulmonar en un modelo de daño pulmonar agudo. Neumol Cir Torax. 2010;69(2):97-102.

  10. Chen J, Zhang J, Shaik NF, Yi B, Wei X, Yang XF, et al. The histone deacetylase inhibitor tubacin mitigates endothelial dysfunction by up-regulating the expression of endothelial nitric oxide synthase. J Biol Chem. 2019;294(51):19565-19576. https://doi.org/10.1074/jbc.ra119.011317

  11. Yan X, Li Y, Choi YH, Wang C, Piao Y, Ye J, et al. Protective effect and mechanism of alprostadil in acute respiratory distress syndrome induced by oleic acid in rats. Med Sci Monit. 2018;24:7186-7198. https://doi.org/10.12659/msm.909678

  12. Kamuf J, Garcia-Bardon A, Ziebart A, Thomas R, Rümmler R, Möllmann C, et al. Oleic acid-injection in pigs as a model for acute respiratory distress syndrome. J Vis Exp. 2018;(140):57783. doi: 10.3791/57783.

  13. Pechulis R, Satti AG, Wang P, Xue-Bing Q, Criner GJ. Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In: Criner G, Barnette R, D'Alonzo G, editors. Critical care study guide. New York: Springer; 2010. Available from: https://doi.org/10.1007/978-0-387-77452-7_16

  14. Norma Oficial Mexicana NOM-062-ZOO-1999 [en línea]. Especificaciones técnicas para la producción, cuidado y uso de animales de laboratorio. Diario Oficial de la Federación; 1999. Accesible en: https://www.fmvz.unam.mx/fmvz/principal/archivos/062ZOO.PDF

  15. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. 8th ed. Washington (DC): National Academies Press (US); 2011. Available from: https://www.ncbi.nlm.nih.gov/books/NBK54050/doi: 10.17226/12910

  16. Balls M. Replacement of animal procedures: alternatives in research, education and testing. Lab Anim. 1994;28(3):193-211. https://doi.org/10.1258/002367794780681714

  17. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412

  18. Bumbacher S, Schramel JP, Mosing M. Evaluation of three tidal volumes (10, 12 and 15 mL kg-1) in dogs for controlled mechanical ventilation assessed by volumetric capnography: a randomized clinical trial. Vet Anaesth Analg. 2017;44(4):775-784. https://doi.org/10.1016/j.vaa.2016.10.007

  19. Donati PA, Plotnikow G, Benavides G, Belerenian G, Jensen M, Londoño L. Tidal volume in mechanically ventilated dogs: can human strategies be extrapolated to veterinary patients? J Vet Sci. 2019;20(3):e21. https://doi.org/10.4142/jvs.2019.20.e21

  20. Hernández-Jiménez C, Jasso-Victoria R, Olmos-Zúñiga R, Villalba-Caloca J, Gaxiola-Gaxiola M, Sotres-Vega A, et al. Experimental model of canine oleic acid-induced acute lung injury: establishing a working model. Rev Invest Clin. 2010;62(3):222-230.

  21. Valverde A, Gianotti G, Rioja-Garcia E, Hathway A. Effects of high-volume, rapid-fluid therapy on cardiovascular function and hematological values during isoflurane-induced hypotension in healthy dogs. Can J Vet Res. 2012;76(2):99-108.

  22. Koksel O, Kaplan MB, Ozdulger A, Tamer L, Degirmenci U, Cinel L, et al. Oleic acid-induced lung injury in rats and effects of caffeic acid phenyl ester. Exp Lung Res. 2005;31(5):483-496. https://doi.org/10.1080/01902140590918876

  23. Hsu SM, Raine L. Protein A, avidin, and biotin in immunohistochemistry. J Histochem Cytochem. 1981;29(11):1349-1353. https://doi.org/10.1177/29.11.6172466

  24. Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue-a review. Diagn Pathol. 2014;9:221. https://doi.org/10.1186/s13000-014-0221-9

  25. Barreira ER, Munoz GO, Cavalheiro PO, Suzuki AS, Degaspare NV, Shieh HH, et al; Brazilian Pediatric Acute Respiratory Distress Syndrome Study Group. Epidemiology and outcomes of acute respiratory distress syndrome in children according to the Berlin definition: a multicenter prospective study. Crit Care Med. 2015;43(5):947-953. https://doi.org/10.1097/ccm.0000000000000866

  26. Ashbaugh DG, Uzawa T. Respiratory and hemodynamic changes after injection of free fatty acids. J Surg Res. 1968;8(9):417-423. https://doi.org/10.1016/0022-4804(68)90057-7

  27. Carrillo Esper R, Sánchez Zúñiga MJ, Medveczky Ordoñes NI, Elizondo Argueta S, Ramírez Ambriz PM, Sánchez Pérez H. Síndrome de insuficiencia respiratoria aguda, 50 años después. Med Crit. 2017;31(4):246-254.

  28. Gonçalves-de-Albuquerque CF, Silva RA, Burth P, de Moraes IM, Oliveira FM, Younes-Ibrahim M, et al. Oleic acid induces lung injury in mice through activation of the ERK pathway. Mediators Inflamm. 2012;2012:956509. https://doi.org/10.1155/2012/956509

  29. Beilman G. Pathogenesis of oleic acid-induced lung injury in the rat: distribution of oleic acid during injury and early endothelial cell changes. Lipids. 1995;30(9):817-823. https://doi.org/10.1007/bf02533957

  30. Gonçalves-de-Albuquerque CF, Burth P, Silva AR, de Moraes IM, de Jesus Oliveira FM, Santelli RE, et al. Oleic acid inhibits lung Na/K-ATPase in mice and induces injury with lipid body formation in leukocytes and eicosanoid production. J Inflamm (Lond). 2013;10(1):34. https://doi.org/10.1186/1476-9255-10-34

  31. Gonçalves-de-Albuquerque CF, Silva AR, Burth P, Castro-Faria MV, Castro-Faria-Neto HC. Acute respiratory distress syndrome: role of oleic acid-triggered lung injury and inflammation. Mediators Inflamm. 2015;2015:260465. https://doi.org/10.1155/2015/260465

  32. Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L379-L399. https://doi.org/10.1152/ajplung.00010.2008

  33. Kluttig R, Friedheim T, Behem C, Zach N, Brown R, Graessler M, et al. Invasive hemodynamic monitoring of aortic and pulmonary artery hemodynamics in a large animal model of ARDS. J Vis Exp. 2018;(141). https://doi.org/10.3791/57405

  34. Kafi SA, Scillia P, Mélot C, Gevenois PA, Pagnamenta A, Naeije R. Abnormal pulmonary vascular tone in canine oleic acid lung injury. Crit Care Med. 2002;30(7):1565-1569. https://doi.org/10.1097/00003246-200207000-00028

  35. Leeman M, Lejeune P, Closset J, Vachiéry JL, Mélot C, Naeije R. Nature of pulmonary hypertension in canine oleic acid pulmonary edema. J Appl Physiol (1985). 1990;69(1):293-298. https://doi.org/10.1152/jappl.1990.69.1.293

  36. Adejare A, Oloyo A, Anigbogu C, Jaja S. L-arginine supplementation increased only endothelium-dependent relaxation in sprague-dawley rats fed a high-salt diet by enhancing abdominal aorta endothelial nitric oxide synthase gene expression. Clin Med Insights Cardiol. 2020;14:1179546820902843. https://doi.org/10.1177/1179546820902843

  37. Chao YK, Wu YC, Yang KJ, Chiang LL, Liu HP, Lin PJ, et al. Pulmonary perfusion with L-arginine ameliorates post-cardiopulmonary bypass lung injury in a rabbit model. J Surg Res. 2011;167(2):e77-e83. https://doi.org/10.1016/j.jss.2009.10.041

  38. Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, thrombosis, kidney failure, and diabetes: is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J Clin Med. 2020;9(5):1417. https://doi.org/10.3390/jcm9051417

  39. Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and endothelial function. Biomedicines. 2020;8(8):277. https://doi.org/10.3390/biomedicines8080277

  40. Böger R, Hannemann J. Dual role of the L-arginine-ADMA-NO pathway in systemic hypoxic vasodilation and pulmonary hypoxic vasoconstriction. Pulm Circ. 2020;10(2):2045894020918850. https://doi.org/10.1177/2045894020918850

  41. Putensen C, Räsänen J, Downs JB. Effect of endogenous and inhaled nitric oxide on the ventilation-perfusion relationships in oleic-acid lung injury. Am J Respir Crit Care Med. 1994;150(2):330-336. https://doi.org/10.1164/ajrccm.150.2.8049811

  42. Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LRG, Mewburn JD, et al. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest. 2017;151(1):181-192. https://doi.org/10.1016/j.chest.2016.09.001

  43. Kelland NF, Bagnall AJ, Morecroft I, Gulliver-Sloan FH, Dempsie Y, Nilsen M, et al. Endothelial ET(B) limits vascular remodelling and development of pulmonary hypertension during hypoxia. J Vasc Res. 2010;47(1):16-22. https://doi.org/10.1159/000231717

  44. Durán WN, Breslin JW, Sánchez FA. The NO cascade, eNOS location, and microvascular permeability. Cardiovasc Res. 2010;87(2):254-261. https://doi.org/10.1093/cvr/cvq139

  45. Yu HP, Liu FC, Umoro A, Lin ZC, Elzoghby AO, Hwang TL, et al. Oleic acid-based nanosystems for mitigating acute respiratory distress syndrome in mice through neutrophil suppression: how the particulate size affects therapeutic efficiency. J Nanobiotechnology. 2020;18(1):25. https://doi.org/10.1186/s12951-020-0583-y

  46. Qiu Y, Yang X, Wang L, Gao K, Jiang Z. L-arginine inhibited inflammatory response and oxidative stress induced by lipopolysaccharide via arginase-1 signaling in IPEC-J2 cells. Int J Mol Sci. 2019;20(7):1800. https://doi.org/10.3390/ijms20071800

  47. Wu T, Wang C, Ding L, Shen Y, Cui H, Wang M, et al. Arginine relieves the inflammatory response and enhances the casein expression in bovine mammary epithelial cells induced by lipopolysaccharide. Mediators Inflamm. 2016;2016:9618795. https://doi.org/10.1155/2016/9618795

  48. Araz O. Current pharmacological approach to ARDS: The place of bosentan. Eurasian J Med. 2020;52(1):81-85. https://doi.org/10.5152/eurasianjmed.2020.19218

  49. Jesmin S, Yamaguchi N, Zaedi S, Sultana SN, Iwashima Y, Sawamura A, et al. Time-dependent expression of endothelin-1 in lungs and the effects of TNF-α blocking peptide on acute lung injury in an endotoxemic rat model. Biomed Res. 2011;32(1):9-17. https://doi.org/10.2220/biomedres.32.9

  50. Comellas AP, Briva A. Role of endothelin-1 in acute lung injury. Transl Res. 2009;153(6):263-271. https://doi.org/10.1016/j.trsl.2009.02.007

  51. Albertine KH, Wang ZM, Michael JR. Expression of endothelial nitric oxide synthase, inducible nitric oxide synthase, and endothelin-1 in lungs of subjects who died with ARDS. Chest. 1999;116(1 Suppl):101S-102S.

  52. Carpenter T, Schomberg S, Steudel W, Ozimek J, Colvin K, Stenmark K, et al. Endothelin B receptor deficiency predisposes to pulmonary edema formation via increased lung vascular endothelial cell growth factor expression. Circ Res. 2003;93(5):456-463. https://doi.org/10.1161/01.res.0000090994.15442.42




Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Table 1

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Neumol Cir Torax. 2020;79