medigraphic.com
SPANISH

Odovtos - International Journal of Dental Sciences

ISSN 1659-1046 (Print)
Odovtos - International Journal of Dental Sciences
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

<< Back Next >>

Odovtos-Int J Dent Sc 2021; 23 (1)

Microtensile Bond Strength Between Self-Adhesive Resin Cements and Resin Based Ceramic CAD/CAM Block

Berkman M, Tuncer S, Tekçe N, Karabay F, Demirci M
Full text How to cite this article

Language: English
References: 39
Page: 116-125
PDF size: 311.10 Kb.


Key words:

CAD/CAM, Resin-ceramic, Microtensile, Adhesives, Resin cements, Dental bonding.

ABSTRACT

Purpose: The objective of this study is to evaluate and compare the microtensile bond strength (μTBS) of four different self-adhesive resin cements to a resin-based ceramic CAD/CAM block, at the baseline, and after subjecting them to 5,000 thermo-cycles.Materials and Methods: Four self-adhesive dual-cured resin cements; G-CEM LinkAce (GC EUROPE, Leuven, Belgium), RelyX U200 (3M ESPE, Seefeld, Germany), Maxcem Elite (Kerr, CA, USA), TheraCem (Bisco, Schaumburg, USA) were applied to Cerasmart CAD/CAM blocks (GC EUROPE, Leuven, Belgium). CAD/CAM blocks were sectioned into sticks and subjected to µTBS tests at 24 hours, and the other half were subjected to tests after 5000 thermo-cycles. The data were tested by one-way variance analysis (p‹0.05). Results: The highest bond strength values were observed in TheraCem, followed by G-CEM LinkAce and RelyX U200, respectively (p‹0.05). At the baseline, G-CEM LinkAce, RelyX U200, and Maxcem Elite showed statistically similar results. After 5,000 thermal-cycles, a significant decrease was observed in the bond strength values of G-CEM LinkAce (p‹0.05). Conclusion: Between the adhesive cements used in the study, TheraCem showed the highest micro-tensile bond strength values both in the baseline (24h) results, and after the 5,000 thermalcycle aging procedures.


REFERENCES

  1. O’Brien W.J. Dental Materials and Their Selection. 3rd ed. Chicago: Quintessence Publishing Co, Inc.; 2002.

  2. Pegoraro T.A., da Silva N.R., Carvalho R.M. Cements for use in esthetic dentistry. Dent Clin North Am. 2007; 51 (2): 453-71.

  3. Sunico-Segarra M.S., Armin. A Practical Clinical Guide to Resin Cements. Berlin: Springer; 2015.

  4. Sakaguchi R.L., Powers J.M. Craig's restorative dental materials. 13th ed. Philadelphia: Elsevier Health Sciences; 2012.

  5. Manso A. P., Carvalho R. M. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements. Dent Clin North Am. 2017; 61 (4): 821-34.

  6. Ferracane J. L., Stansbury J. W., Burke F. J. Self-adhesive resin cements- chemistry, properties and clinical considerations. J Oral Rehabil. 2011; 38 (4): 295-314.

  7. Pilo R., Papadogiannis D., Zinelis S., Eliades G. Setting characteristics and mechanical properties of self-adhesive resin luting agents. Dent Mater. 2017; 33 (3): 344-57.

  8. Zorzin J., Petschelt A., Ebert J., Lohbauer U. pH neutralization and influence on mechanical strength in self-adhesive resin luting agents. Dental Materials. 2012; 28 (6): 672-9.

  9. Marghalani H.Y. Sorption and solubility characteristics of self-adhesive resin cements. Dent Mater. 2012; 28 (10): e187-98.

  10. Yin R., Kim Y.K., Jang Y.S., Lee J.J., Lee M.H., Bae T.S. Comparative evaluation of the mechanical properties of CAD/CAM dental blocks. Odontology. 2019; 107 (3): 360-7.

  11. Lauvahutanon S., Takahashi H., Shiozawa M., Iwasaki N., Asakawa Y., Oki M., et al. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J. 2014; 33 (5): 705-10.

  12. Blatz M. B., Conejo J. The Current State of Chairside Digital Dentistry and Materials. Dent Clin North Am. 2019; 63 (2): 175-97.

  13. Gurdal I., Atay A., Eichberger M., Cal E., Usumez A., Stawarczyk B. Color change of CAD-CAM materials and composite resin cements after thermocycling. J Prosthet Dent. 2018; 120 (4): 546-52.

  14. Lambert H., Durand J.C., Jacquot B., Fages M. Dental biomaterials for chairside CAD/ CAM: State of the art. J Adv Prosthodont. 2017; 9 (6): 486-95.

  15. Stawarczyk B., Sener B., Trottmann A., Roos M., Ozcan M., Hammerle C.H. Discoloration of manually fabricated resins and industrially fabricated CAD/CAM blocks versus glassceramic: effect of storage media, duration, and subsequent polishing. Dent Mater J. 2012; 31 (3): 377-83.

  16. Spitznagel F. A., Horvath S. D., Guess P. C., Blatz M. B. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. J Esthet Restor Dent. 2014; 26 (6): 382-93.

  17. Fuentes M., Escribano N., Baracco B., Romero M., Ceballos L. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements. Journal of Clinical and Experimental Dentistry. 2015:0-.

  18. Seghi R. R., Leyva Del Rio D. Biomaterials: Ceramic and Adhesive Technologies. Dent Clin North Am. 2019; 63 (2):233-48.

  19. Horvath S.D. Key Parameters of Hybrid Materials for CAD/CAM-Based Restorative Dentistry. Compend Contin Educ Dent. 2016; 37 (9): 638-43.

  20. Elsaka S.E. Bond strength of novel CAD/ CAM restorative materials to self-adhesive resin cement: the effect of surface treatments. J Adhes Dent. 2014; 16 (6): 531-40.

  21. Emsermann I., Eggmann F., Krastl G., Weiger R., Amato J. Influence of Pretreatment Methods on the Adhesion of Composite and Polymer Infiltrated Ceramic CAD-CAM Blocks. J Adhes Dent. 2019; 21 (5): 433-43.

  22. Higashi M., Matsumoto M., Kawaguchi A., Miura J., Minamino T., Kabetani T., et al. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 1: Effects of sandblasting and silanization. Dent Mater J. 2016; 35 (1): 21-8.

  23. Peumans M., Valjakova E.B., De Munck J., Mishevska C.B., Van Meerbeek B. Bonding Effectiveness of Luting Composites to Different CAD/CAM Materials. J Adhes Dent. 2016; 18 (4): 289-302.

  24. Lise D. P., Van Ende A., De Munck J., Vieira L., Baratieri L.N., Van Meerbeek B. Microtensile Bond Strength of Composite Cement to Novel CAD/CAM Materials as a Function of Surface Treatment and Aging. Oper Dent. 2017; 42 (1): 73-81.

  25. da Silva E.M., Miragaya L., Sabrosa C.E., Maia L.C. Stability of the bond between two resin cements and an yttria-stabilized zirconia ceramic after six months of aging in water. J Prosthet Dent. 2014; 112 (3): 568-75.

  26. Van Landuyt K.L., Snauwaert J., De Munck J., Peumans M., Yoshida Y., Poitevin A., et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007; 28 (26): 3757-85.

  27. Yoshihara K., Yoshida Y., Nagaoka N., Fukegawa D., Hayakawa S., Mine A., et al. Nano-controlled molecular interaction at adhesive interfaces for hard tissue reconstruction. Acta Biomater. 2010; 6 (9): 3573-82.

  28. Lee K-S, Shin M-S, Lee J-Y, Ryu J-J, Shin S-W. Shear bond strength of composite resin to high performance polymer PEKK according to surface treatments and bonding materials. The Journal of Advanced Prosthodontics. 2017; 9 (5): 350.

  29. Han L., Okamoto A., Fukushima M., Okiji T. Evaluation of physical properties and surface degradation of self-adhesive resin cements. Dent Mater J. 2007; 26 (6): 906-14.

  30. Tekce N., Tuncer S., Demirci M., Kara D., Baydemir C. Microtensile Bond Strength of CAD/CAM Resin Blocks to Dual-Cure Adhesive Cement: The Effect of Different Sandblasting Procedures. J Prosthodont. 2019; 28 (2): e485-e90.

  31. Ferrari M., Carvalho C. A., Goracci C., Antoniolli F., Mazzoni A., Mazzotti G., et al. Influence of luting material filler content on post cementation. J Dent Res. 2009; 88 (10): 951-6.

  32. Chen L., Yang J., Wang J.R., Suh B.I. Physical and biological properties of a newly developed calcium silicate-based self-adhesive cement. Am J Dent. 2018; 31 (2): 86-90.

  33. Mazzitelli C., Monticelli F., Osorio R., Casucci A., Toledano M., Ferrari M. Effect of simulated pulpal pressure on self-adhesive cements bonding to dentin. Dent Mater. 2008; 24 (9): 1156-63.

  34. Fuentes M.V., Escribano N., Baracco B., Romero M., Ceballos L.. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements. J Clin Exp Dent. 2016; 8 (1): e14-21.

  35. Sokolowski G., Szczesio A., Bociong K., Kaluzinska K., Lapinska B., Sokolowski J., et al. Dental Resin Cements-The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion. Materials (Basel). 2018; 11 (6).

  36. Kim H. J., Bagheri R., Kim Y.K., Son J.S., Kwon T.Y. Influence of Curing Mode on the Surface Energy and Sorption/Solubility of Dental Self-Adhesive Resin Cements. Materials (Basel). 2017; 10 (2).

  37. Kim J.E., Kim J.H., Shim J.S., Roh B.D., Shin Y. Effect of Surface Treatment on Shear Bond Strength between Resin Cement and Ce-TZP/ Al2O3. Biomed Res Int. 2016; 2016: 7576942.

  38. Zorzin J., Belli R., Wagner A., Petschelt A., Lohbauer U. Self-adhesive resin cements: adhesive performance to indirect restorative ceramics. J Adhes Dent. 2014; 16 (6): 541-6.

  39. Ferracane J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater. 2006; 22 (3): 211-22.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Odovtos-Int J Dent Sc. 2021;23