medigraphic.com
SPANISH

MediSur

ISSN 1727-897X (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 3

<< Back Next >>

Medisur 2020; 18 (3)

Study on predictive models for COVID-19 in Cuba

Medina MJF, Cortés CME, Cortés IM, Pérez FAC, Manzano CM
Full text How to cite this article

Language: Spanish
References: 14
Page: 431-442
PDF size: 489.76 Kb.


Key words:

coronavirus infections, forecasting, Cuba.

ABSTRACT

Foundation: on the pandemic caused by the new SARS-CoV-2 coronavirus, it is important to estimate the growth of infested cases and deaths of the Cuban population.
Objective: to obtain predictions for the peak of confirmed and deceased cases in Cuba by COVID-19, using statistical and computer tools.
Methods: the least squares method was used to obtain the parameters using linear (MCL) and nonlinear (MCNL) models. Logistic and exponential models, such as the logistic growth curve, used to model population growth (Gompertz growth models), were applied to the growth prediction of infected cases and / or deaths, respectively.
Results: there is an adequacy of the presented models with respect to the predicted and the real values which allow their reliability for the predictions made for Cuba.
Conclusions: statistical prediction models obtained give very significant results for the COVID-19 pandemic study in Cuba.


REFERENCES

  1. Lin Q, Zhao S, Gao D, Lou Y, Yang S, Musa SS, et al. A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. International Journal of Infectious Diseases. 2020;93:211-16.

  2. Cagigal MA, Becario FP. Modelado y análisis de la evolución de una epidemia vírica mediante filtros de Kalman: el caso del COVID-19 en España [Internet]. Sevilla: Universidad de Sevilla; 2020 [citado 04/04/2020]. Disponible en: Disponible en: https://www.us.es/actualidad-de-la-us/modelado-y-analisis-de-la-evolucion-de-una-epidemia-virica-mediante-filtros-de.

  3. Bacaër N. Un modelo matemático de la epidemia de coronavirus en Francia [Internet]. París: Institut de Recherche pour le Developpement; 2020 [citado 23/04/2020]. Disponible en: Disponible en: https://hal.archives-ouvertes.fr/hal-02509142v2/file/epidemie_es.pdf.

  4. Deb S, Majumdar M. A time series method to analyze incidence pattern and estimate reproduction number of COVID-19. Bengaluru: Indian Institute of Management; 2020.

  5. Wang CJ, Ng CY, Brook RH. Response to COVID-19 in Taiwan: big data analytics, new technology, and proactive testing. JAMA. 2020;323(14):1341-1342.

  6. Hu Z, Ge Q, Jin L, Xiong M. Artificial intelligence forecasting of COVID-19 in China [Internet]. Boston: Researchgate; 2020 [citado 23/07/2020]. Disponible en: Disponible en: https://www.researchgate.net/publication/339324015_Artificial_Intelligence_Forecasting_of_Covid-19_in_China.

  7. Zhou C, Su F, Pei T, Zhang A, Du Y, Luo B, et al. COVID-19: challenges to GIS with big data. Geography and Sustainability. 2020;1:77-87.

  8. Avendaño VH. Infección del COVID-19 en Colombia. Una comparación de modelos logísticos y exponenciales aplicados a la infección por el virus en Colombia [Internet]. Boston: Researchgate ; 2020 [citado 23/04/2020]. Disponible en: Disponible en: https://www.researchgate.net/publication/340092755_Infeccion_del_Covid-19_en_Colombia_Una_comparacion_de_modelos_logisticos_y_exponenciales_aplicados_a_la_infeccion_por_el_virus_en_Colombia.

  9. Jia L, Li K, Jiang Y, Guo X. Prediction and analysis of Coronavirus Disease 2019 [Internet]. Ithaka: Cornell University; 2020 [citado 20/04/2020]. Disponible en: Disponible en: https://arxiv.org/ftp/arxiv/papers/2003/2003.05447.pdf.

  10. Villalobos-Arias M. Estimation of population infected by Covid-19 using regression. Ithaka: Cornell University ; 2020.

  11. Villalobos-Arias, M.Estimation of population infected by Covid-19 using regression. Ithaka: Cornell University ; 2020.

  12. Simón Mínguez F. (2016). Procesos de difusión Logístico y Gompertz. Métodos numéricos clásicos en la estimación paramétrica [Tesis de Maestría]. Granada: Universidad de Granada; 2016 [citado 23/04/2020]. Disponible en: Disponible en: https://masteres.ugr.es/moea/pages/curso201516/tfm1516/simon_minguez_tfm/!.

  13. DOE. Maxima, a Computer Algebra System [Internet]. New York: Dice Holdings; 2013 [citado 23/04/2020]. Disponible en: Disponible en: http://maxima.sourceforge.net/es/index.html#top.

  14. GNU. The R Project for Statistical Computing [Internet]. Cambridge: GNU Project; 2018 [citado 23/04/2020]. Disponible en: Disponible en: https://www.r-project.org/.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Medisur. 2020;18