medigraphic.com
SPANISH

Revista Electrónica de Psicología Iztacala

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

<< Back Next >>

Rev Elec Psic Izt 2021; 24 (1)

Psychometric properties of an instrument to measure behavioral styles in ecuadorian population

Ortiz FGJ, Rivera PCM, Recalde RJ, López GVM
Full text How to cite this article

Language: Spanish
References: 49
Page: 164-181
PDF size: 198.45 Kb.


Key words:

Kudert test, DISC behavioral model, psychometric analysis, online assessment.

ABSTRACT

This study aimed to analyze the psychometric properties of the Kudert test, developed to measure DISC behavioral styles in the work context. The sample consisted of 3371 Ecuadorian participants (1541 men and 1830 women), who took the test through an online platform. Given the dichotomous nature of the data, a robust diagonally least squares estimation method was used, with Promin rotation, based on a tetrachoric correlation matrix. A Confirmatory Factor Analysis was carried out with the AMOS statistical software and an Exploratory Analysis of Structural Equations with using FACTO. The goodness of fit of these models was evaluated using the comparative adjustment index, Tucker- Lewis index, mean square error of aproximation and weighted root mean square error, showing good fit in all the indicators of the Exploratory Structural Equation Model. The evidence of internal consistency using the ordinal alpha coefficient was greater than 0.75 in the four dimensions. Results suggest that a 41-item version provides sufficient information to measure DISC behavioral styles in Ecuadorian population. These findings constitute an important contribution that can serve as a basis for the development of a reduced inventory, based on the integration of new findings on the factor structure of the instrument in other populations.


REFERENCES

  1. Al Ali, O. (2014). Personality and Workplace Behaviour. (Documento en línea). Recuperado de https://www.researchgate.net/publication/312173114_Personality_and_Wor kplace_Behaviour

  2. Alshehri, K., Alshamrani, H., Alharbi, A., Alshehri, H., Enani, M., Alghamdi, M. y Hassanien, M. (2018). The relationship between personality type and the academic achievement of medical students in a Saudi medical school. International Journal Of Community Medicine And Public Health, 5(8), 3205- 3211. Recuperado de https://www.ijcmph.com/index.php/ijcmph/article/view/3300

  3. Antoniou, A. (2019). Compatibility of Small Team Personalities in Computer-Based Tasks. DOI: 10.3390/challe10010029

  4. Arthur, W., Glaze, R., Villado, A. y Taylor, J. (2010). The magnitude and extent of cheating and response distortion effects on unproctored Internet-based tests of cognitive ability and personality. International Journal of Selection and Assessment, 18, 1-16. Recuperado de https://onlinelibrary.wiley.com/doi/10.1111/j.1468-2389.2010.00476.x

  5. Ashton, M. y Lee, K. (2009). The HEXACO-60: A short measure of the major dimensions of personality. Journal of Personality Assessment, 91(4), 340- 345. DOI: 10.1080/00223890902935878

  6. Barendse, M., Oort, F. y Timmerman, M. (2015). Using exploratory factor analysis to determine the dimensionality of discrete responses. Structural Equation Modeling: A Multidisciplinary Journal, 22(1), 87-101. Recuperado de https://www.tandfonline.com/doi/abs/10.1080/10705511.2014.934850

  7. Bonanomi, A., Cantaluppi, G., Ruscone, M. N., y Osmetti, S. A. (2015). A new estimator of Zumbo’s Ordinal Alpha: a copula approach. Quality y Quantity, 49(3), 941-953. Recuperado de https://link.springer.com/article/10.1007/s11135-014-0114-8

  8. Bonnstetter, B. y Suiter, J. (2007) The Universal Language DISC: A Reference Manual. Phoenix, AZ: Target Training International, Ltd.

  9. Booth, T., y Hughes, D. J. (2014). Exploratory structural equation modeling of personality data. Assessment, 21(3), 260-271. Recuperado de https://journals.sagepub.com/doi/abs/10.1177/1073191114528029

  10. Bradberry, T. (2008). El código de la personalidad. Bogotá: Grupo Editorial Norma.

  11. Browne, M. (1972b). Oblique rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 207-212. Recuperado de https://doi.org/10.1111/j.2044-8317.1972.tb00492.x

  12. Cano, A. (2018). Utilización de test psicológicos en procesos de selección del personal en consultoras de Recursos Humanos de Asunción. Eureka, 15(1), 108-120. Recuperado de https://psicoeureka.com.py/sites/default/files/articulos/eureka-15-1-15.pdf

  13. Chiorri, C., Marsh, H., Ubbiali, A. y Donati, D. (2014). Testing the factor structure and measurement invariance across gender of the Big Five Inventory through exploratory structural equation modeling. Journal of personality assessment, 1(98), 88-99. Recuperado de: https://doi.org/10.1080/00223891.2015.1035381

  14. Cloninger, S. (2003). Teorías de la personalidad. 3a Ed. México: Pearson Education.

  15. Deviney, D., Mills, L., Gerlich, R. y Santander, C. (2011). Impact of behavioral factors on GPA for gifted and talented students. Academy of Educational Leadership Journal, 15(2), 55-68. Recuperado de https://www.questia.com/library/journal/1P3-2439525431/impact-ofbehavioral- factors-on-gpa-for-gifted-and

  16. Domínguez Lara, S. (2014). Propuesta para el cálculo del Alfa Ordinal y Theta de Armor. Revista De Investigación En Psicología, 15(1), 213-217. https://doi.org/10.15381/rinvp.v15i1.3684

  17. Domínguez-Lara, S. (2014). ¿Matrices policóricas/tetracóricas o matrices Pearson? Un estudio metodológico. Revista Argentina de Ciencias del Comportamiento (RACC) 6(1), 39-48. Recuperado de https://revistas.unc.edu.ar/index.php/racc/article/view/6357

  18. Dominguez-Lara, S. (2018). Fiabilidad y alfa ordinal. Actas Urológicas Españolas, 42(2), 140-141. DOI: 10.1016/j.acuro.2017.07.002

  19. Duck, J. (2006). Making the connection: Improving virtual team performance through behavioral assessment profiling and behavioral cues. Developments in Business Simulation and Experiential Learning, 33, 358- 359. Recuperado de https://absel-ojsttu. tdl.org/absel/index.php/absel/article/view/544

  20. Ferrando, P. y Lorenzo-Seva, U. (2017). Program FACTOR at 10: origins, development and future directions. Psicothema, 29(2), 236-241. doi: 10.7334/psicothema2016.304 Recuperado de http://www.psicothema.com/psicothema.asp?id=4389

  21. Ferrando, P., y Aguiano-Carrasco, C. (2010). El análisis factorial como técnica de investigación en Psicología. Papeles del psicólogo, 1(31), 18-33. Recuperado de http://www.redalyc.org/articulo.oa?id=77812441003

  22. Freiberg-Hoffman, A., Ledesma, R. y Fernández-Liporace, M. (2016). Análisis de las propiedades psicométricas del inventario de estrategias de aprendizaje y estudio (LASSI) en estudiantes universitarios. Revista Iberoamericana de Diagnóstico y Evaluación - e Availação Psicológica (RIDEP), 44(2), 116- 130. https://www.aidep.org/sites/default/files/2017-09/R44-Art10.pdf

  23. Freiberg-Hoffman, A., Stover, B., de la Iglesia, G. y Fernández-Liporace, M. (2013). Correlaciones policóricas y tetracóricas en estudios factoriales exploratorios y confirmatorios. Ciencias Psicológicas, 7(2), 151-164. Recuperado de: http://www.scielo.edu.uy/pdf/cp/v7n2/v7n2a05.pdf

  24. Gil-Gaytan, O., y Nuñez-Partido, A. (2017). Rasgos de personalidad de exportadores mexicanos con éxito. RAN-Revista Academia y Negocios, 3(1). Recuperado de https://rei.iteso.mx/bitstream/handle/11117/5039/Razgos+de+personalidad+ de+exportadores+mexicanos+exitosos.pdf?sequence=2

  25. Gorostiaga, A., Balluerka, N., Ulacia, I. y Aliri, A. (2018). Evaluación de la iniciativa personal en el ámbito educativo y su relación con la actitud emprendedora y el rendimiento académico. Revista Iberoamericana de Diagnóstico y Evaluación-e Avaliação Psicológica (RIDEP), 3(48), 105-116. Recuperado de https://www.aidep.org/sites/default/files/2018-06/9_Pre_48.pdf

  26. Hernández, R., Fernández, C. y Baptista, P. (2014). Metodología de la investigación. 6a. Ed. México, D.F.: McGraw-Hill.

  27. Holgado–Tello, F., y Chacón-Moscoso, S., Babero-García, I. y Vila-Abad, E. (2010). Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables. Quality y Quantity, 44(1). Recuperado de https://link.springer.com/article/10.1007%2Fs11135-008- 9190-y

  28. Instituto Ecuatoriano de la Propiedad Intelectual. (2016). QUI-048841. Quito: Dirección Nacional de Derechos de Autor y Derechos Conexos.

  29. Jones, C. y Hartley, N. (2013). Comparing Correlations Between Four-Quadrant And Five-Factor Personality Assessments. American Journal of Business Education (AJBE), 6(4), 459. DOI: 10.19030/ajbe.v6i4.7945

  30. Keogh, T., Robinson, J. y Parnell, J. (2019). Assessing Behavioral Styles Among Nurse Managers: Implications for Leading Effective Teams. Hospital Topics, 97(1), 32-38. Recuperado de https://doi.org/10.1080/00185868.2018.1563460

  31. Li, C. (2016). Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behavior research methods, 48(3), 936-949. DOI: 10.3758/s13428-015-0619-7

  32. Lievens, F. y Harris, M. (2003). Research on Internet recruitment and testing: Current status and future directions. In I. Robertson y C. Cooper (Eds.), The international review of industrial and organisational psychology. Chichester: Wiley. Recuperado de https://onlinelibrary.wiley.com/doi/10.1002/0470013346.ch4

  33. Lorenzo-Seva, U. y Ferrando, P. (2019). Robust Promin: a method for diagonally weighted factor rotation. Liberabit, 25(1), 99-106. Recuperado de: http://ojs3.revistaliberabit.com/index.php/Liberabit/article/view/236/177

  34. Lorenzo-Seva, U. y Ferrando, P.J. (2013). FACTOR 9.2 A comprehensive program for fitting exploratory and semiconfirmatory factor analysis and IRT models. Applied Psychological Measurement, 37(6), 497-498. DOI: 10.1177/0146621613487794

  35. Marsh, H., Morin, A., Parker, P. y Kaur, G. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. Annual review of clinical psychology, 10(2014), 85-110. Recuperado de https://www.annualreviews.org/doi/abs/10.1146/annurevclinpsy- 032813-153700

  36. Marston, W. (1928). Emotions of Normal People. New York: Harcourt, Brace y Company.

  37. Mueller, R. y Hancock, G. (2008). Best practices in structural equation modeling. En Osborne, J. Best practices in quantitative methods (pp. 488-508). Thousand Oaks, CA: SAGE Publications, Inc.

  38. Muñiz, J., Elosua, P. y Hambleton, R. (2013). Directrices para la traducción y adaptación de los tests: segunda edición. Psicothema, 25(2), 151-157. Recuperado de http://www.cop.es/pdf/dtyatest.pdf

  39. Ogunyemi, D., Mahller, Y., Wohlmuth, C., Eppey, R., Tangchitnob, E. y Alexander, C. (2011). Associations between DISC assessment and performance in obstetrics and gynecology residents. The Journal of Reproductive Medicine, 56(9-10), 398-404. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/22010523

  40. Plante, T., Goldfarb, L. y Guadagnoli, E. (1985). Construct validity for the Activity Vector Analysis utilizing the sixteen personality factors questionnaire. Journal of Clinical Psychology, 41(2), 220-230. Recuperado de https://onlinelibrary.wiley.com/doi/abs/10.1002/1097- 4679%28198503%2941%3A2%3C220%3A%3AAIDJCLP2270410215% 3E3.0.CO%3B2-5

  41. Price, L. (2018). DISC Technical Supplement: Technical information. (Documento en línea). Recuperado de: https://cdn2.hubspot.net/hubfs/3356961/Documents/DISC%20Tech%20Sup p.pdf

  42. Puccio, G., y Grivas, C. (2009). Examining the Relationship between Personality Traits and Creativity Styles. Creativity and Innovation Management, 18(4), 247-255. Recuperado de https://doi.org/10.1111/j.1467-8691.2009.00535.x

  43. Schneider, B. y Smith, B. (2004). Personality and organizations. Mahwah, Estados Unidos: Lawrence Erlbaum Associates.

  44. Schumacker, R., y Lomax, R. (2004). A beginner's guide to structural equation modeling. 2a Ed. Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.

  45. Scullard, M. y Baum, D. (2015). Everything DiSC® Manual. NJ, USA: Wiley.

  46. Smith, L. (2009). A comparison of the DISC behavior profiling tool and the personal interests, attitudes and values report. [Tesis de Doctorado]. Minneapolis: Capella University. Recuperado de https://images.ttiresearch.com/wpcontent/ uploads/2019/04/17164843/DISC-dis_Larry-A.-Smith_short.pdf

  47. Spector, P. (2002). Psicología industrial y organizacional. Investigación y práctica. México: Editorial El Manual Moderno.

  48. Tornillo, J., Pascal, G., Moguerza, J. y Redchuk, A. (2019). Personality traits and Business Intelligence: A model to improve direct selling systems. 2019 5th International Conference on Information Management (ICIM) (pp. 202-206). Recuperado de https://ieeexplore.ieee.org/document/8714704

  49. Williamson, J., Krumwiede, K., Reed, J., Farmer, S. y Behrendt, W. (2015). Does behavioral style influence learning strategy in health professions students? Journal of allied health, 44(3), 158-163. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/26342613




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Elec Psic Izt. 2021;24