medigraphic.com
SPANISH

Salud Jalisco

ISSN 2448-8747 (Print)
Publicación cuatrimestral editada por la Secretaría de Salud Jalisco
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

<< Back Next >>

Sal Jal 2021; 8 (1)

Relevancia del uso de nanomateriales utilizados en biosensores para la detección de Tuberculosis

Oviedo-Chávez D, López-Romero W, Flores-Valdez MA
Full text How to cite this article

Language: Spanish
References: 35
Page: 41-51
PDF size: 285.67 Kb.


Key words:

Diagnosis, tuberculosis, biosensors and nanobiosensors.

ABSTRACT

Background: A specific and sensitive diagnosis is a fundamental objective for the control of tuberculosis (TB), a life-threatening infectious disease in humans. Technologies employed for biodetection in conjunction with nanotechnology have enormous potential to drive TB detection and general management of clinical diagnosis. A wide range of rapid, sensitive, specific, and rapid portable nanobiosensors have been developed based on different signal transduction principles and with different biomarker detection capabilities for early stage TB detection. Objective: Present a review focused on conventional TB detection techniques and biosensors and nanobiosensors technologies. Materials and methods: Bibliographic search in PubMed with the keywords “tuberculosis” and “diagnosis” paying special attention to publications incorporating nanotechnology. Results: Nanobiosensors produce the results that are sought and fulfill the characteristics established in the objective of an accurate diagnosis of TB and not and not only based on detection of immunological memory. Conclusions: The combination of biosensors with a nanotechnology platform has allowed the development of diagnostic techniques that offer a range of proposals to classify as point-of-care (POC) devices and be used in marginalized areas highly affected by TB.


REFERENCES

  1. Acharya, B., Acharya, A., Gautam, S., Ghimire, S. P., Mishra, G., Parajuli, N., & Sapkota, B. (2020). Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Molecular Biology Reports. doi. org/10.1007/s11033-020-05413-7

  2. Akbarzadeh, A., Samiei, M., & Davaran, S. (2012). Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters, 7(1), 144. doi:10.1186/1556-276x-7-144

  3. Alcaide Megías, J., Altet Gómez, M. N., & Canela I Soler, J. (2000). Epidemiología de la tuberculosis. Anales Españoles de Pediatría, 53(5), 449–457. https://doi.org/10.1016/s1695-4033(00)78628-0

  4. Bai, L., Chen, Y., Liu, X., Zhou, J., Cao, J., Hou, L., & Guo, S. (2019). Ultrasensitive electrochemical detection of Mycobacterium tuberculosis IS6110 fragment using gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet as signal tags. Analytica Chimica Acta. doi:10.1016/j. aca.2019.06.043

  5. Bhusal, N., Shrestha, S., Pote, N., & Alocilja, E. (2018). Nanoparticle-Based Biosensing of Tuberculosis, an Aff ordable and Practical Alternative to Current Methods. Biosensors, 9(1),1. doi:10.3390/bios9010001

  6. CDC. (2016). Factores de riesgo de la tuberculosis | Datos básicos sobre la tuberculosis | TB | CDC. Retrieved April 20, 2020, from https://www.cdc.gov/tb/esp/topic/basics/risk.htm

  7. Chan, K. F., Lim, H. N., Shams, N., Jayabal, S., Pandikumar, A., & Huang, N. M. (2016). Fabrication of graphene/gold-modifi ed screen-printed electrode for detection of carcinoembryonic antigen. Materials Science and Engineering: C, 58, 666–674. doi:10.1016/j.msec.2015.09.010

  8. Chen, M., Hou, C., Huo, D., Bao, J., Fa, H., & Shen, C. (2016). An electrochemical DNA biosensor based on nitrogen-doped graphene/Au nanoparticles for human multidrug resistance gene detection. Biosensors and Bioelectronics, 85, 684–691. doi:10.1016/j.bios.2016.05.051

  9. Chen, Y., Liu, X., Guo, S., Cao, J., Zhou, J., Zuo, J., & Bai, L. (2019). A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C60NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEIfunctionalized metal-organic framework. Biomaterials, 216, 119253. doi:10.1016/j.biomaterials.2019.119253

  10. Das, M., Dhand, C., Sumana, G., Srivastava, A. K., Vijayan, N., Nagarajan, R., & Malhotra, B. D. (2011). Zirconia graft ed carbon nanotubes based biosensor for M. Tuberculosis detection. Applied Physics Letters, 99(14), 143702. doi:10.1063/1.3645618

  11. Flores, M. A., López, W., & Aceves, M. de J. (2018). El diagnóstico oportuno de tuberculosis en personas diabéticas: ¿es posible? | México es ciencia - El Sol de México. Retrieved February 10, 2020, from https://www.elsoldemexico.com.mx/analisis/eldiagnostico- oportuno-de-tuberculosis-en-personas-diabeticases- posible-mexico-es-ciencia-1678964.html

  12. Flores, M. A. (2018). Cómo mejorar diagnóstico de tuberculosis - Conacyt - | La Crónica de Hoy. Retrieved February 10, 2020, from http://www.cronica.com.mx/notas/2018/1071912.html

  13. Flores, M. A. (2017). ¿Cómo han evolucionado los métodos para diagnosticar tuberculosis latente? – Conacyt – |La Crónica de Hoy. Retrieved February 10, 2020, from http://www.cronica.com. mx/notas/2017/1048841.html

  14. González-Guerrero, A. B., Maldonado, J., Herranz, S., & Lechuga, L. M. (2016). Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics. Analytical Methods, 8(48), 8380–8394. doi:10.1039/c6ay02972h

  15. Gordillo-Marroquín, C., Gómez-Velasco, A., Sánchez-Pérez, H., Pryg, K., Shinners, J., Murray, N., … Alocilja, E. (2018). Magnetic Nanoparticle-Based Biosensing Assay Quantitatively Enhances Acid-Fast Bacilli Count in Paucibacillary Pulmonary Tuberculosis. Biosensors, 8(4), 128. doi:10.3390/bios8040128

  16. Gupta, S., & Kakkar, V. (2018). Recent technological advancements in tuberculosis diagnostics – A review. Biosensors and Bioelectronics, 115, 14–29. doi:10.1016/j.bios.2018.05.017

  17. Gupta-Wright, A. & Lawn, S. D. (2015) Advances in the Diagnosis of HIV-Associated Tuberculosis. EMJ Respi, 3(1), 60-70. Retrieved from : http://researchonline.lshtm.ac.uk/id/ eprint/2235966/

  18. Hongler, J., Musaazi, J., Ledergerber, B., Eberhard, N., Sekaggya- Wiltshire, C., Keller, P., … Castelnuovo, B. (2018). Comparison of Löwenstein-Jensen and BACTEC MGIT 960 culture for Mycobacterium tuberculosis in people living with HIV. HIV Medicine. doi:10.1111/hiv.12635

  19. Kik, S. V., Denkinger, C. M., Chedore, P., & Pai, M. (2014). Replacing smear microscopy for the diagnosis of tuberculosis: what is the market potential? European Respiratory Journal, 43(6), 1793–1796. doi:10.1183/09031936.00217313

  20. Kim, E. J., Kim, E. B., Lee, S. W., Cheon, S. A., Kim, H.-J., Lee, J., … Park, T. J. (2017). An easy and sensitive sandwich assay for detection of Mycobacterium tuberculosis Ag85B antigen using quantum dots and gold nanorods. Biosensors and Bioelectronics, 87, 150–156. doi:10.1016/j.bios.2016.08.034

  21. Koo, H. C., Park, Y. H., Ahn, J., Waters, W. R., Palmer, M. V., Hamilton, M. J., … Davis, W. C. (2005). Use of rMPB70 Protein and ESAT-6 Peptide as Antigens for Comparison of the Enzyme-Linked Immunosorbent, Immunochromatographic, and Latex Bead Agglutination Assays for Serodiagnosis of Bovine Tuberculosis. Journal of Clinical Microbiology, 43(9), 4498–4506. doi:10.1128/jcm.43.9.4498-4506.2005

  22. Li, Z., Li, X., Zong, Y., Tan, G., Sun, Y., Lan, Y., … Zheng, X. (2017). Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe 3 O 4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon, 115, 493–502. doi:10.1016/j.carbon.2017.01.036

  23. López-Romero, W., Flores-Valdez, M. & Camacho-Villegas, T. (2019). Métodos actuales empleados para el diagnóstico de tuberculosis y su efi cacia en diversos entornos clínicos. Salud Jalisco, 6(3), 170–180.

  24. Miodek, A., Mejri, N., Gomgnimbou, M., Sola, C., & Korri- Youssoufi , H. (2015). E-DNA Sensor of Mycobacterium tuberculosis Based on Electrochemical Assembly of Nanomaterials (MWCNTs/PPy/PAMAM). Analytical Chemistry, 87(18), 9257–9264. doi:10.1021/acs.analchem.5b01761

  25. Mohd Azmi, U., Yusof, N., Kusnin, N., Abdullah, J., Suraiya, S., Ong, P., … Mohamad Fathil, M. (2018). Sandwich Electrochemical Immunosensor for Early Detection of Tuberculosis Based on Graphene/Polyaniline-Modifi ed Screen-Printed Gold Electrode. Sensors, 18(11), 3926. doi:10.3390/s18113926

  26. Mukundan, H., Price, D. N., Goertz, M., Parthasarathi, R., Montaño, G. A., Kumar, S., … Swanson, B. I. (2012). Understanding the interaction of Lipoarabinomannan with membrane mimetic architectures. Tuberculosis, 92(1), 38–47. doi:10.1016/j.tube.2011.09.006

  27. Mulpur, P., Yadavilli, S., Mulpur, P., Kondiparthi, N., Sengupta, B., Rao, A. M., … Kamisetti, V. (2015). Flexible Ag–C60 nanobiosensors based on surface plasmon coupled emission for clinical and forensic applications. Physical Chemistry Chemical Physics, 17(38), 25049–25054. doi:10.1039/c5cp04268b

  28. Perumal, V., Saheed, M. S. M., Mohamed, N. M., Saheed, M. S. M., Murthe, S. S., Gopinath, S. C. B., & Chiu, J.-M. (2018). Gold nanorod embedded novel 3D graphene nanocomposite for selective bio-capture in rapid detection of Mycobacterium tuberculosis. Biosensors and Bioelectronics, 116, 116–122. doi:10.1016/j.bios.2018.05.042

  29. Petruccioli, E., Scriba, T. J., Petrone, L., Hatherill, M., Cirillo, D. M., Joosten, S. A., … Goletti, D. (2016). Correlates of tuberculosis risk: Predictive biomarkers for progression to active tuberculosis. European Respiratory Journal, 48(6), 1751–1763. doi.org/10.1183/13993003.01012-2016

  30. Ramírez-Priego, P., Martens, D., Elamin, A. A., Soetaert, P., Van Roy, W., Vos, R., … Lechuga, L. M. (2018). Label-free and realtime detection of tuberculosis in human urine samples using a nanophotonic point-of-care platform. ACS Sensors. doi:10.1021/ acssensors.8b00393

  31. Secretaria de Salud & Dirección General de Epidemiología. (2020). BoletínEpidemiológico Sistema Nacional de Vigilancia Epidemiológica Sistema Único de Información | Secretaría de Salud | Gobierno | gob.mx. Retrieved April 23, 2020, from https://www.gob.mx/salud/documentos/boletinepidemiologicosistema- nacional-de-vigilancia-epidemiologica-sistema-unicode- informacion-231750

  32. Wei, Q., Xiang, Z., He, J., Wang, G., Li, H., Qian, Z., & Yang, M. (2010). Dumbbell-like Au-Fe3O4 nanoparticles as label for the preparation of electrochemical immunosensors. Biosensors and Bioelectronics, 26(2), 627–631. doi:10.1016/j.bios.2010.07.012

  33. WHO. (2019). Regional and global profi les. Global Status Report of Tuberculosis, 251–258. Retrieved from www.who.int/ tb/data

  34. WHO. (2020). México. Global Status Report of Tuberculosis. Retrieved from www.who.int/tb/data

  35. Zhou, Q., Xue, H., Zhang, Y., Lv, Y., Li, H., Liu, S., … Zhang, Y. (2018). Metal-Free All-Carbon Nanohybrid for Ultrasensitive Photoelectrochemical Immunosensing of alpha-Fetoprotein. ACS Sensors, 3(7), 1385–1391. doi:10.1021/acssensors.8b00307




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Sal Jal. 2021;8