Entrar/Registro  
HOME SPANISH
 
Cirugía y Cirujanos
   
MENU

Contents by Year, Volume and Issue

Table of Contents

General Information

Instructions for Authors

Message to Editor

Editorial Board






>Journals >Cirugía y Cirujanos >Year 2018, Issue 4


Hernández-Flores C, Domínguez-Hernández VM, Delgado A, Pérez-Moreno R, Valdez-Mijares R
Effect of BioOsteo® in combination with epidermal growth factor and ascorbic acid in a rat tibia defect
Cir Cir 2018; 86 (4)

Language: Inglés
References: 34
Page: 332-337
PDF: 237.77 Kb.


Full text




ABSTRACT

Background: Treatment of bone defects derived from trauma or from removal of tumors or osteosynthesis materials can cause socioeconomic problems as a result of treatment length. Objective: The purpose of this study was to determine the effect of the implant material BioOsteo® in combinations with epidermal growth factor (EGF) and ascorbic acid (AA) on the consolidation of a non-critical size bone defect. Materials and methods: A unicortical non-critical bone defect was practiced in the right tibia of Wistar rats and 3 weeks later, a biomechanical property analysis was performed through a three-point bending test. Results: We found that a 1 time single-dose local application of AA + EGF + BioOsteo®, directly over the non-critical bone defect microenvironment improves its repair.


Key words: Bone repair, Polyurethane resin, Implants, Three-point bending test.


REFERENCIAS

  1. Shinohara Y, Nakamura T, Shirakata Y, Noguchi K. Bone healing capabilities of recombinant human bone morphogenetic protein-9 (rhBMP-9) with a chitosan or collagen carrier in rat calvarial defects. Dent Mater J. 2016;35:454-60.

  2. Xiangning L, Ye Z, Shaobing L, et al. Study of a new bone targeting titanium implant–bone interface. Int J Nanomed. 2016;11:6307-24.

  3. Walsh WR, Oliver RA, Christou C, et al. Critical size bone defect healing using collagen–calcium phosphate bone graft materials. PLoS One. 2017;2017:1-21.

  4. Liu F, Chen K, Hou L, et al. Determining the critical size of a rabbit rib segmental bone defect model. Regen Biomater. 2016;3:323-8.

  5. LoGuidice A, Houlihan A, Deans R. Multipotent adult progenitor cells on an allograft scaffold facilitate the bone repair process. J Tissue Eng. 2016;7:1-14.

  6. Kim RW, Kim JH, Moon SY. Effect of hydroxyapatite on critical-sized defect. Maxillofac Plast Reconstr Surg. 2016;38:26.

  7. Scarano A, Lorusso F, Ravera L, Mortellaro C, Piattelli A. Bone regeneration in iliac crestal defects: an experimental study on sheep. BioMed Res Int. 2016;2016:1-6.

  8. Hernández-Flores C, Delgado A, Domínguez-Hernández VM. Evaluación biomecánica de un modelo de defecto óseo en tibia de rata. Rev Mex Ing Bioméd. 2011;22:12-19.

  9. Dos Santos PL, Molon RS, Queiroz TP, et al. Evaluation of bone substitutes for treatment of peri-implant bone defects: biomechanical, histological, and immunohistochemical analyses in the rabbit tibia. J Period Implant Sci. 2016;46:176-19.

  10. Landry PS, Marino AA, Sadasivan KK, et al. Bone injury response. An animal model for testing theories of regulation. Clin Orthop Relat Res. 1996;332:260-73.

  11. Platt MO, Roman AJ, Wells A, Lauffenburger DA, Griffith LG. Sustained epidermal growth factor receptor levels and activation by tethered ligand binding enhances osteogenic differentation of multi-potent marrow stromal cell. J Cell Physiol. 2009;221:306-17.

  12. Doan PL, Himburg HA, Helms K, et al. Epidermal growth factor regulates hematopoietic regeneration following radiation injury. Nat Med. 2013; 19:295-304.

  13. Abhishek C, Shenghui L, Ji Z, Valerie AS, Ling Q. Epidermal growth factor receptor (EGFR) signaling promotes proliferation and survival in osteoprogenitors by increasing early growth response 2 (EGR2) expression. J Biol Chem. 2013;288:20488-98.

  14. Hasagawa T, Li M, Hara K, et al. Morphological assessment of bone mineralization in tibial metaphyses of ascorbic acid-deficients ODS rats. Biomed Res. 2011;32:259-69.

  15. Urban K, Höhling HJ, Lüttenberg B, Szuwart T, Plate U. An in vitro study of osteoblast vitality influenced by the vitamins C and E. Head Face Med. 2012;8:25.

  16. Won K, Seyeon B, Hyemin K, et al. Ascorbic acid insufficiency induces the severe defect on bone formation via the down- regulation of osteocalcin production. Anat Cell Biol. 2013;46:254-61.

  17. Jin-Kyu P, Eun-Mi L, Ah-Young K, et al. Vitamin C deficiency accelerates bone loss inducing an increase in PPAR-γ expression in SMP30 knockout mice. Int J Exp Path. 2012;93:332-40.

  18. Kim YA, Kim KM, Lim S, et al. Favorable effect of dietary vitamin C on bone mineral density in postmenopausal women (KNHANES IV, 2009): discrepancies regarding skeletal sites, age, and vitamin D status. Osteoporos Int. 2015;26:2329-37.

  19. Bak B, Andreassen TT. Reduced energy absorption of healed fracture in the rat. Acta Orthop Scand. 1988;59:548-51.

  20. Bak B, Jorgensen PH, Andreassen TT. The stimulating effect of growth hormone on fracture healing is dependent on onset and duration of administration. Clin Orthop Relat Res. 1991;264:295-301.

  21. Siegel S, Castellan NJ. Non-parametric Statitstics for the Behavioral Sciences. 2nd ed. New York: Mc Graw-Hill; 1988.

  22. Carvalho TL, Aráujo CA, Teófilo JM, Brentegani LG. Histologic and histometric evaluation of rat alveolar wound healing around polyurethane resin implants. Int J Oral Maxillofac Surg. 1997;26:149-52.

  23. Laureano Filho JR, Castelo Branco Bde L, Andrade ES, Barbosa JR. Histological comparison of demineralized bone matrix and the ricinus communis polymer on bone regeneration. Braz J Otorhinolaryngol. 2007; 73:186-92.

  24. Del Angel-Mosqueda C, Gutiérrez-Puente Y, López-Lozano AP, et al. Epidermal growth factor enhances osteogenic differentiation of dental pulp stem cells in vitro. Head Face Med. 2015;11:29.

  25. Lee HL, Park HJ, Kwon A, et al. Smurf1 plays a role in EGF inhibition of BMP2-induced osteogenic differentiation. Exp Cell Res. 2014;323: 276-87.

  26. Wang A, Ding X, Sheng S, Yao Z. Bone morphogenetic protein receptor in the osteogenic differentiation of rat bone marrow stromal cells. Yonsei Med J. 2010;51:740-5.

  27. Lee JH, Jang SJ, Baek HR, et al. Synergistic induction of early stage of bone formation by combination of recombinant human bone morphogenetic protein-2 and epidermal growth factor. J Tissue Eng Regen Med. 2015;9:447-59.

  28. Farhadian N, Miresmaeili A, Azar R, Zargaran M, Moghimbeigi A, Soheilifar S. Effect of dietary ascorbic acido on osteogenesis of expanding midpalatal suture in rats. J Dent (Tehran). 2015;12:39-48.

  29. Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med. 2011;51:1000-13.

  30. Aghajanian P, Hall S, Wongworawat MD, Mohan S. The roles and mechanisms of actions of vitamin C in bone: new developments. J Bone Miner Res. 2015;30:1945-55.

  31. Giordano V, Albuquerque RP, do Amaral NP, et al. Supplementary vitamin C does not accelerate bone healing in a rat tibia fracture model. Acta Ortop Bras. 2012;20:10-2.

  32. Nabavi N, Pustylnik S, Harrison RE. Rab GTPase mediated procollagen trafficking in ascorbic acid stimulated osteoblasts. PLoS One. 2012;7: e46265.

  33. Hart A, Cota A, Makhdom A, Harvey EJ. The role of vitamin C in orthopedic trauma and bone health. Am J Orthop (Belle Mead NJ). 2015;44: 306-11.

  34. Le Nihouannen D, Barralet JE, Fong JE, Komarova SV. Ascorbic acid accelerates osteoclast formation and death. Bone. 2010;46:1336-43.






>Journals >Cirugía y Cirujanos >Year 2018, Issue 4
 

· Journal Index 
· Links 






       
Copyright 2019