Entrar/Registro  
HOME SPANISH
 
Gaceta Médica de México
   
MENU

Contents by Year, Volume and Issue

Table of Contents

General Information

Instructions for Authors

Message to Editor

Editorial Board






>Journals >Gaceta Médica de México >Year 2015, Issue 2


Herman LH, Alanís-Garza EJ, Estrada PMF, Mureyko LL, Alarcón TDA, Ixtepan TL
Nutritional approaches to modulate oxidative stress that induce Alzheimer’s disease. Nutritional approaches to prevent Alzheimer’s disease
Gac Med Mex 2015; 151 (2)

Language: Español
References: 57
Page: 245-251
PDF: 117.77 Kb.


Full text




ABSTRACT

Alzheimer´s disease is the most common cause of dementia in the world; symptoms first appear after age 65 and have a progressive evolution. Expecting an increase on its incidence and knowing there is currently no cure for Alzheimer’s disease, it is a necessity to prevent progression. The change in diet due to globalization may explain the growth of the incidence in places such as Japan and Mediterranean countries, which used to have fewer incidences. There is a direct correlation between disease progression and the increased intake of alcohol, saturated fats, and red meat. Therefore, we find obesity and higher serum levels in cholesterol due to saturated fat as a result. A way to decrease the progression of Alzheimer´s is through a diet rich in poliphenoles (potent antioxidants), unsaturated fats (monounsaturated and polyunsaturated), fish, vegetable fat, fruits with low glycemic index, and a moderate consumption of red wine. Through this potent antioxidant diet we accomplish the prevention of dementia and the progression of Alzheimer´s disease. This article emphasizes the food and other components that have been demonstrated to decrease the oxidative stress related to these progressive diseases.


Key words: Alzheimer, Dementia, Diet, Antioxidant, Prevention.


REFERENCIAS

  1. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Demnt. 2013;9(1):63-75.e2.

  2. Corbett A, Williams G, Ballard C. Drug repositioning: an opportunity to develop novel treatments for Alzheimer’s disease. Pharmaceuticals (Basel). 2013;6(10):1304-21.

  3. Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology. 2013;80(19):1778-83.

  4. Wortmann M. Dementia: a global health priority - highlights from an ADI and World Health Organization report. Alzheimers Res Ther. 2012;4(5):40.

  5. Reitz C, Jun G, Naj A, et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ε4,and the risk of late-onset Alzheimer disease in African Americans. JAMA. 2013;309(14):1483-92.

  6. Gandy S, DeKosky S. Toward the treatment and prevention of Alzheimer’s disease: rational strategies and recent progress. Annu Rev Med. 2013;64:367-83.

  7. Chin AL, Negash S, Hamilton R. Diversity and disparity in dementia: the impact of ethnoracial differences in Alzheimer disease. Alzheimer Dis Assoc Disord. 2011;25(3):187-95.

  8. Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology. 2013;80(19):1778-83.

  9. Cipriani G, Dolciotti C, Picchi L, Bonuccelli U. Alzheimer and his disease: a brief history. Neurol Sci. 2011;32(2):275-9.

  10. Singhal AK, Naithani V, Om Prakash Bangar. Medicinal plants with a potential to treat Alzheimer and associated symptoms. IJNPND. 2012;2:84-91.

  11. Iqbal K, Flory M, Soininen H. Clinical symptoms and symptom signatures of Alzheimer’s disease subgroups. J Alzheimers Dis. 2013;37(3):475-81.

  12. Blacker D, Haines JL, Rodes L, et al. ApoE-4 and age at onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology. 1997; 48(1):139-47.

  13. Jack CR Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207-16.

  14. Schedin-Weiss S, Winblad B, Tjernberg LO. The role of protein glycosylation in Alzheimer disease. FEBS J. 2014;281(1):46-62.

  15. Medina M, Avila J. New insights into the role of glycogen synthase kinase-3 in Alzheimer’s disease. Expert Opin Ther Targets. 2014;18(1): 69-77.

  16. Goutagny R, Krantic S. Hippocampal Oscillatory Activity in Alzheimer’s Disease: Toward the Identification of Early Biomarkers? Aging Dis. 2013;4(3):134-40.

  17. Brayda-Bruno L, Mons N, Yee BK, et al. Partial loss in septo-hippocampal cholinergic neurons alters memory-dependent measures of brain connectivity without overt memory deficits. Neurobiol Dis. 2013;54: 372-81.

  18. La Joie R, Perrotin A, de La Sayette V, et al. Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia. Neuroimage (Amst). 2013;3:155-62.

  19. Becker JA, Hedden T, Carmasin J, et al. Amyloid-β associated cortical thinning in clinically normal elderly. Ann Neurol. 2011;69(6):1032-42.

  20. Zhang X, Li H, Mao Y, et al. An over expression APP model for anti-Alzheimer disease drug screening created by zinc finger nuclease technology. PLoS One. 2013;8(11):e75493.

  21. Tyagi E, Fiorelli T, Norden M, Padmanabhan J. Alpha 1-Antichymotrypsin, an Inflammatory Protein Overexpressed in the Brains of Patients with Alzheimer’s Disease, Induces Tau Hyperphosphorylation through c-Jun N-Terminal Kinase Activation. Int J Alzheimers Dis. 2013;2013:606083.

  22. Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis. 2013;33 Suppl 1:S67-78.

  23. Parajuli B, Sonobe Y, Horiuchi H, Takeuchi H, Mizuno T, Suzumura A. Oligomeric amyloid β induces IL-1β processing via production of ROS: implication in Alzheimer’s disease. Cell Death Dis. 2013;4:e975.

  24. Schrag M, Mueller C, Zabel M, et al. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol Dis. 2013;59:100-10.

  25. Guerra-Araiza C, Álvarez-Mejía AL, Sánchez-Torres S, et al. Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases. Free Radic Res. 2013;47(6-7):451-62.

  26. Cimini A, Gentile R, D’Angelo B, et al. Cocoa powder triggers neuroprotective and preventive effects in a human Alzheimer’s disease model by modulating BDNF signaling pathway. J Cell Biochem. 2013;114(10): 2209-20.

  27. Hou CW, Lin YT, Chen YL, et al. Neuroprotective effects of carnosic acid on neuronal cells under ischemic and hypoxic stress. Nutr Neurosci. 2012. [Epub ahead of print]

  28. Quitschke WW, Steinhauff N, Rooney J. The effect of cyclodextrin-solubilized curcuminoids on amyloid plaques in Alzheimer transgenic mice: brain uptake and metabolism after intravenous and subcutaneous injection. Alzheimers Res Ther. 2013;5(2):16.

  29. Villaflores OB, Chen YJ, Chen CP, Yeh JM, Wu TY. Curcuminoids and resveratrol as anti-Alzheimer agents. Taiwan J Obstet Gynecol. 2012;51(4):515-25.

  30. Davinelli S, Sapere N, Zella D, Bracale R, Intrieri M, Scapagnini G. Pleiotropic protective effects of phytochemicals in Alzheimer’s disease. Oxid Med Cell Longev. 2012;2012:1-11.

  31. Lin L, Huang QX, Yang SS, Chu J, Wang JZ, Tian Q. Melatonin in Alzheimer’s disease. Int J Mol Sci. 2013;14(7):14575-93.

  32. Cardinali DP, Vigo DE, Olivar N, Vidal MF, Furio AM, Brusco LI. Therapeutic application of melatonin in mild cognitive impairment. Am J Neurodegener Dis. 2012;1(3):280-91.

  33. Bernal-Mondragón C, Rivas-Arancibia S, Kendrick KM, Guevara-Guzmán R. Estradiol prevents olfactory dysfunction induced by A-beta 25-- 35 injection in hippocampus. BMC Neurosci. 2013;14:104.

  34. Balsamo S, Willardson JM, Frederico Sde S, et al. Effectiveness of exercise on cognitive impairment and Alzheimer’s disease. Int J Gen Med. 2013;6:387-91.

  35. Ashare RL, Karlawish JH, Wileyto EP, Pinto A, Lerman C. APOE ε4, an Alzheimer’s disease susceptibility allele, and smoking cessation. Pharmacogenomics J. 2013;13(6):538-43.

  36. Hu N, Yu JT, Tan L, Wang YL, Sun L, Tan L. Nutrition and the risk of Alzheimer’s disease. Biomed Res Int. 2013;2013:1-12.

  37. Dhungana H, Rolova T, Savchenko E, et al. Western-type diet modulates inflammatory responses and impairs functional outcome following permanent middle cerebral artery occlusion in aged mice expressing the human apolipoprotein E4 allele. J Neuroinflammation. 2013;10:102.

  38. Dodge HH, Buracchio TJ, Fisher GG, et al. Trends in the prevalence of dementia in Japan. Int J Alzheimers Dis. 2012;2012:956354.

  39. Pallauf K, Giller K, Huebbe P, Rimbach G. Nutrition and healthy ageing: calorie restriction or polyphenol-rich «MediterrAsian» diet? Oxid Med Cell Longev. 2013;2013:707421.

  40. Shinto L, Quinn J, Montine T, et al. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J Alzheimers Dis. 2014;38(1):111-20.

  41. Hu N, Yu JT, Tan L, Wang YL, Sun L, Tan L. Nutrition and the risk of Alzheimer’s disease. Biomed Res Int. 2013;2013:524820.

  42. Hjorth E, Zhu M, Toro VC, et al. Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-β42 by human microglia and decrease inflammatory markers. J Alzheimers Dis. 2013;35(4):697-713.

  43. Lim HJ, Shim SB, Jee SW, et al. Green tea catechin leads to global improvement among Alzheimer’s disease-related phenotypes in NSE/ hAPP-C105 Tg mice. J Nutr Biochem. 2013;24(7):1302-13.

  44. Pasinetti GM. Novel role of red wine-derived polyphenols in the prevention of Alzheimer’s disease dementia and brain pathology: experimental approaches and clinical implications. Planta Med. 2012;78(15):1614-9.

  45. Bhullar KS, Rupasinghe HP. Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxid Med Cell Longev. 2013;2013:894718.

  46. Azad N, Rasoolijazi H, Taghi-Joghataie M, Soleimani S. Neuroprotective Effects of Carnosic Acid in an Experimental Model of Alzheimer’s Disease in Rats. Cell J. 2011;13(1):39-44.

  47. Meng P, Yoshida H, Matsumiya T, et al. Carnosic acid suppresses the production of amyloid-β 1-42 by inducing the metalloprotease gene TACE/ADAM17 in SH-SY5Y human neuroblastoma cells. Neurosci Res. 2013;75(2):94-102.

  48. Hyung SJ, DeToma AS, Brender JR, et al. Insights into antiamyloidogenic properties of the green tea extract (-)-epigallocatechin-3-gallate toward metal-associated amyloid-β species. Proc Natl Acad Sci U S A. 2013;110(10):3743-8.

  49. Lee YJ, Choi DY, Yun YP, Han SB, Oh KW, Hong JT. Epigallocatechin- 3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J Nutr Biochem. 2013;24(1):298-310.

  50. Huang TC, Lu KT, Wo YY, Wu YJ, Yang YL. Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One. 2011;6(12):1-9.

  51. Comai S, Gobbi G. Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: a novel target in psychopharmacology. J Psychiatry Neurosci. 2014;39(1):6-21.

  52. Cižas P, Jekabson˙e A, Borutait˙e V, Morkˉunien˙e R. Prevention of amyloid- beta oligomer-induced neuronal death by EGTA, estradiol, and endocytosis inhibitor. Medicina (Kaunas). 2011;47(2):107-12.

  53. Barron A, Pike C. Sex hormones, aging, and Alzheimer’s disease. Front Biosci. 2012;4:976-97.

  54. Grimm A, Lim YA, Mensah-Nyagan AG, Götz J, Eckert A. Alzheimer’s disease, oestrogen and mitochondria: an ambiguous relationship. Mol Neurobiol. 2012;46(1):151-60.

  55. Seyedreza P, Alireza MN, Seyedebrahim H. Role of testosterone in memory impairment of Alzheimer disease induced by Streptozotocin in male rats. Daru. 2012;20(1):98.

  56. Butchart J, Birch B, Bassily R, Wolfe L, Holmes C. Male sex hormones and systemic inflammation in Alzheimer disease. Alzheimer Dis Assoc Disord. 2013;27(2):153-6.

  57. Rosario ER, Carroll JC, Pike CJ. Evaluation of the effects of testosterone and luteinizing hormone on regulation of β-amyloid in male 3xTg-AD mice. Brain Res. 2012;1466:137-45.






>Journals >Gaceta Médica de México >Year 2015, Issue 2
 

· Journal Index 
· Links 






       
Copyright 2019