Medicina Crítica

Contents by Year, Volume and Issue

Table of Contents

General Information

Instructions for Authors

Message to Editor

Editorial Board

>Journals >Medicina Crítica >Year 2018, Issue 6

Pascual ES, Sánchez DJS, Peniche MKG, Martínez REA, Villegas DJE, Calyeca SMV
Evaluation of tissue perfusion in patients with normodynamic versus hyperdynamic septic shock
Rev Asoc Mex Med Crit y Ter Int 2018; 32 (6)

Language: Español
References: 37
Page: 344-350
PDF: 204.66 Kb.

Full text


Introduction: Since microvascular blood flow alterations were documented in patients with septic shock, numerous studies over the years have established the prognostic impact of these alterations in this group of patients.
Material and methods: A cohort, ambispective, longitudinal, descriptive and analytical study was performed in patients with a diagnosis of septic shock admitted to the Intensive Care Unit (ICU) in the period from June 15, 2015 to July 30, 2018. Patients were classified on admission in those with SvcO2 ≥ 80% (hyperdynamic septic shock) and those with SvcO2 ‹ 80% (normodynamic septic shock). The following tissue perfusion variables were used: lactate, Δp(v-a)CO2, Δp(v-a)CO2/Δ(a-v)O2 and ERO2. All statistical analyzes were done with the SPSSTM 22.0 program.
Results: In the period considered, 82 patients met the inclusion criteria, 60 of which (73.1%) were classified as in normodynamic shock status and 22 (26.9%) as hyperdynamic. The multivariate analysis reported the ERO2 with OR 20,373 (95% CI: 2.451-169.320, p = 0.005), the lactate with OR 0.533 (95% CI: 0.146-1.948, p = 0.341), the Δ(va)CO2 with OR 4.848 (95% CI: 1.201-19.565, p = 0.027) and Δ(va)CO2/Δ(av)O2 with OR 0.276 (95% CI: 0.058-1.309, p = 0.105).
Conclusion: Patients with septic shock have alterations of tissue perfusion and microcirculation; these alterations will not depend on their hemodynamic state (hyperdynamia or normodynamia). With an arterial blood gas analysis and a central venous blood gas analysis, we can assess tissue perfusion and microcirculation, measuring variables such as lactate, Δp(v-a)CO2, Δp(v-a)CO2/Δ(a-v)O2 and ERO2 without the need for sophisticated devices.

Key words: Septic shock, normodynamic, hyperdynamic, tissue perfusion.


  1. Reuter DA, Russell JA, Mekontso Dessap A. Beta-blockers in septic shock to optimize hemodynamics? Yes. Intensive Care Med. 2016;42(10):1607-1609.

  2. Weissman C. The metabolic response to stress: an overview and update. Anesthesiology. 1990;73:308-327.

  3. Prescott HC, Angus DC. Enhancing recovery from sepsis: a review. JAMA. 2018;319(1):62-75.

  4. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20(6):864-874.

  5. Levy MM, Fink MO, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003;29(4):530-538.

  6. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801-810.

  7. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98-104.

  8. Hernández G, Teboul JL. Is the macrocirculation dissociated from the microcirculation in septic shock? Intensive Care Med. 2016;42(10):1621-1624.

  9. Rivera-Solís G, Sánchez-Díaz JS, Martínez-Rodríguez EA, García-Méndez RC, Huanca-Pacaje JM, Calyeca-Sánchez MV. Clasificación clínica de la perfusión tisular en pacientes con choque séptico basada en la saturación venosa central de oxígeno (SvcO2) y la diferencia venoarterial de dióxido de carbono entre el contenido arteriovenoso de oxígeno (∆P(v-a)CO2/C(a-v)O2). Med Crit. 2016;30(5):283-289.

  10. Hernandez G, Boerma EC, Dubin A, Bruhn A, Koopmans M, Edul VK, et al. Severe abnormalities in microvascular perfused vessel density are associated to organ dysfunctions and mortality and can be predicted by hyperlactatemia and norepinephrine requirements in septic shock patients. J Crit Care. 2013;28:538.e9–538.e14.

  11. Ospina-Tascón GA, Umaña M, Bermúdez WF, Bautista-Rincón DF, Valencia JD, Madriñán HJ. ¿Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016;42:211-221.

  12. Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015;19 Suppl 3:S8.

  13. Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg. 1996;171:221-226.

  14. Tafner PF, Chen FK, Rabello RF, Corrêa TD, Chaves RC, Serpa AN. Recent advances in bedside microcirculation assessment in critically ill patients. Rev Bras Ter Intensiva. 2017;29(2):238-247.

  15. De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41:791-799.

  16. Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9:S13-S19.

  17. Gutierrez G. The rate of oxygen release and its effect on capillary O2 tension: a mathematical analysis. Respir Physiol. 1986;63:79-96.

  18. Valenzuela-Sánchez F, Bohollo de Austria R, Monge-García I, Gil-Cano A. Shock séptico. Med Intensiva. 2005;29:192-200.

  19. Marx G, Reinhart K. Venous oximetry. Curr Opin Crit Care. 2006;12:263-268.

  20. Gattinoni L, Pesenti A, Matthay M. Understanding blood gas analysis. Intensive Care Med. 2018;44(1):91-93.

  21. Textoris J, Fouché L, Wiramus S, Antonini F, Tho S, Martin C, et al. High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality. Crit Care. 2011;15(4):R176.

  22. Pope JV, Jones AE, Gaieski DF, Arnold RC, Trzeciak S, Shapiro NI. Multicenter study of central venous oxygen saturation (ScvO(2)) as a predictor of mortality in patients with sepsis. Ann Emerg Med. 2010;55:40-46.

  23. Kanoore Edul VS, Ince C, Dubin A. What is microcirculatory shock? Curr Opin Crit Care. 2015;21:245-252.

  24. Mikkelsen ME, Miltiades AN, Gaieski DF, Goyal M, Fuchs BD, Shah CV, et al. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit Care Med. 2009;37:1670-1677.

  25. Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A, Ressler JA, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004;32:1637-1642.

  26. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752-776.

  27. Levy B. Lactate and shock state: the metabolic view. Curr Opin Crit Care. 2006;12(4):315-332.

  28. Mallat J, Lemyze M, Meddour M, Pepy F, Gasan G, Barrailler S, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care. 2016;6(1):10.

  29. Groenveld AB. Interpreting the venous-arterial pCO2 difference. Crit Care Med. 1998;26:979-980.

  30. Lamia B, Monet X, Teboul JL. Meaning of arterio-venous pCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72:597-604.

  31. Van der Linden P, Rausin I, Deltell A, Bekrar Y, Gilbart E, Bakker J, et al. Detection of tissue hypoxia by arteriovenous gradient for pCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg. 1995;80:269-275.

  32. Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, et al. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med. 2005;31:818-822.

  33. He HW, Liu DW, Long Y, Wang XT. High central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio is associated with poor lactate clearance in septic patients after resuscitation. J Crit Care. 2016;31(1):76-81.

  34. Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28:272-277.

  35. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41:1412-1420.

  36. Mesquida J, Saludes P, Gruartmoner G, Espinal C, Torrents E, Baigorri F, et al. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit Care. 2015;19:126.

  37. Edul VS, Ince C, Vazquez AR, Rubatto PN, Espinoza ED, Welsh S, et al. Similar microcirculatory alterations in patients with normodynamic and hyperdynamic septic shock. Ann Am Thorac Soc. 2016;13(2):240-247.

>Journals >Medicina Crítica >Year 2018, Issue 6

· Journal Index 
· Links 

Copyright 2019