Revista de Hematología

Contents by Year, Volume and Issue

Table of Contents

General Information

Instructions for Authors

Message to Editor

Editorial Board

>Journals >Revista de Hematología >Year 2015, Issue 1

Valdespino-Gómez VM, Valdespino-Castillo PM
Genomic and epigenomic alterations of chronic lymphocytic leukemia clones in relation to their cellular basic functions
Rev Hematol Mex 2015; 16 (1)

Language: Español
References: 61
Page: 53-69
PDF: 546.03 Kb.

Full text


Chronic lymphocytic leukemia (CLL) is the most frequent type of chronic leukemia in the Western world population. Although there has been a growing development in the study of CLL integral pathophysiology, its complete understanding is far from being achieved. In this review, we have separated the genomic and epigenomic CLL clone alterations in two main processes, corresponding to the basic cellular functions (FBC) and to the specialized cellular functions of the transformed lymphocytes B. Here we highlight the main genomic and epigenomic disorders of FBC in the CLL clones: 1) recurrence of four main alterations in the acquired genomic copy number aberrations, 2) alterations of 20 main driver genes of CLL clone leukemiogenesis, 3) predominant epigenomic patterns of CpG dinucleotide hypometilation of several genes, enhancers and repetitive sequences, 4) transcriptional deregulation by many alternative transcripts, transcript hyperexpression of metabolic signaling pathways, and transcript hypoexpression of signaling pathways for RNA processing, and proteosoma and ribosoma signaling functioning, and 5) deregulation of eight main intracellular signaling pathways. At present, genomic and epigenomic alterations of CLL clones are subject of translational research studies in search to targeted therapeutic strategies.

Key words: CLL clones, genomic, epigenomic alterations, cellular basic functions.


  1. Valdespino GVM. Leucemia linfocítica crónica de linfocitos B: un modelo personalizado de valoración clínica y molecular. Rev Hematol Mex 2014;15:103-121.

  2. Pflug N, Bahlo J, Shanafelt TD, Eichhorst BF, et al. Development of comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood 2014;124:49-62.

  3. Tam CS, Seymour JF. A new prognostic score for CLL. Blood 2014;124:1-2.

  4. Deaglio S, Vaisitti T, Zucchetto A, Gattei V, Malavasi F. CD38 as a molecular compass guiding topographical decisions of chronic lymphocytic leukemia cells. Sem Cancer Biol 2010;20:416-423.

  5. Hamblin TJ, Davis Z. Gardomer A, Oscler DG, Stevenson FK. Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999;94:1848-1854.

  6. Klein U, Dalla-Favera R. New insights into the pathogenesis of chronic lymphocytic leukemia. Sem Cancer Biol 2010;20:377-383.

  7. Queirós AC, Villamor N, Clot G, Martinez-Trillos A, et al. A B-cell epigenetic signature defines three biological subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia 2014;1038.

  8. Stevenson FK, Krysov S, Davies AJ, Steele AJ, Packham G. B-cell receptor signaling in chronic lymphocytic leukemia. Blood 2011;118:4313-4320.

  9. Chuang HY, Rassenti L, Salcedo M, Licon K, et al. Subnetwork- based analysis of chronic lymphocytic leukemia identifies pathways that associate with disease progression. Blood 2012;120:2639-2649.

  10. Herishanu Y, Katz BZ, Lipsky A, Wiestner A. Biology of chronic lymphocytic leukemia in different microenvironments: clinical and therapeutic implications. Hematol Oncol Clin North Am 2013;27:173-206.

  11. Palacios F, Abreu C, Prieto D, Morande P, et al. Activation of the PI3K/AKT pathways by microRNA-22 results in CLL B-cell proliferation. Leukemia 2014;29:115-125.

  12. Capitani N, Baldari CT. The Bcl-2 family as a rational target for the treatment of B-cell chronic lymphocytic leukaemia. Curr Med Chem 2010;17:801-811.

  13. Fegan C, Pepper C. Apoptosis deregulation in CLL. Adv Exp Med Biol 2013;792:151-171.

  14. Negrini S, Gorgoulia VG, Halazonetis TD. Genomic instability– an evolving hallmark of cancer. Nat Rev Mol Cell Biol 2010;11:220-228.

  15. Stephens PJ, Greenman CD, Fu B, Yang E, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011;44:27-40.

  16. Pellestor F, Gatinois V, Puechberty J, Genevieve D, Lefort G. Chromothripsis, an unexpected novel form of complexity for chromosomal rearrangements. Med Sci Parias 2014;30:266-273.

  17. Kloosterman WP, Koster J, Molenaar JJ. Prevalence and clinical implications of chromothripsis in cancer genomes. Curr Opin Oncol 2014;26:64-72.

  18. Bassaganyas L, Bea S, Escaramis G, Tornador C, et al. Sporadic and reversible chromothripsis in chronic lymphocytic leukemia revealed by longitudinal genomic analysis. Leukemia 2013;27:2376-2379.

  19. Brachitl G, Piñon HJ, Greil R, Hartmann TN. The pathogenic relevance of the prognostic markers CD38 and CD49d in chronic lymphocytic leukemia. Ann Hematol 2014;93:361- 374.

  20. Han TT, Fan L, Li JY, Xu W. Role of chemokines and their receptors in chronic lymphocytic leukemia: function in microenvironment and targeted therapy. Cancer Biol Ther 2014;15:3-9.

  21. Teng Y, Ross JL, Cowell JK. The involvement of JAKSTAT3 in cell motility, invasion and metastasis. JAKSTAT 2014;3:28086.

  22. Riches JC, O’Donovan CJ, Kingdon SJ, McClanahan F, et al. Trisomy 12 chronic lymphocytic leukemia cells exhibit upregulation of integrin signaling that is modulated by NOTCH1 mutations. Blood 2014;123:4101-4110.

  23. Haraksingh RR, Snyder MP. Impacts of variation in the human genome on gene regulation. J Mol Biol 2013;425:3970- 3977.

  24. Malek SN. The biology and clinical significance of acquired genomic copy number aberrations and recurrent gene mutations in chronic lymphocytic leukemia. Oncogene 2013;32:2805-2817.

  25. Puiggros A, Puigdecanet E, Salido M, Ferrer A, et al. Genomic arrays in chronic lymphocytic leukemia routine clinical practice: are we ready to substitute conventional cytogenetics and fluorescence in situ hybridization techniques? Leuk Lymphoma 2013;54:986-995.

  26. Puiggros A, Blanco G, Espinet B. Genetic abnormalities in chronic lymphocytic leukemia: where we are and where we go. Bio Med Res Int 2014;2014:ID435983.

  27. Gaidano G, Foa R. Daiia-Favera R. Molecular pathogenesis of chronic lymphocytic leukemia. J Clin Inves 2012;122:3432-3438.

  28. Dohner H, Stilgenbauer S, Benner A, Leupolt E, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000;343:1910-1916.

  29. Rodriguez Vicente AE, Diaz MG, Hernandez-Rivas JM. Chronic lymphocytic leukemia: a clinical and molecular heterogeneous. Cancer Genet 2013;206:49-62.

  30. Ouillette P, Malek S. Acquired genomic copy number aberrations in CLL. Adv Exp Med Biol 2013;792:47-86.

  31. Baliakas P, Hadzidimitriou A, Sutton LA, Rossi D, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 2014;10:1038.

  32. Stilgenbauer S, Sander S, Bullinger L, Berner A, et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica 2007;92:1242-1245.

  33. Landau DA, Carter SL, Stojanov P. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013;152:714-726.

  34. Improgo MR, Brown JR. Genomic approaches to chronic lymphocytic leukemia. Hematol Oncol Clin N Am 2013;27:157-171.

  35. Quesada V, Ramsay AJ, Rodriguez D, Puente XS, et al. The genomic landscape of chronic lymphocytic leukemia: clinical implications. BMC Medicine 2013:11:124.

  36. Gruber M, Wu CJ. Evolving understanding of the CLL genome. Sem Hematol 2014;51:177-187.

  37. Schnaiter A, Mertens D, Stilgenbauer S. Genetics of chronic lymphocytic leukemia. Clin Lab Med 2011;31:649-658.

  38. Ramsay AJ, Quesada V, Foronda M, Conde L, et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat Genet 2013;45:526-530.

  39. Martinez-Trillos A, Quesada V, Villamor N, Puente XP, et al. Recurrent gene mutations in CLL. Adv Exp Med Biol 2013;792:87-107.

  40. Ramsay AD, Rodriguez D, Villamor N, Kwarciak A, et al. Frequent somatic mutations in components of the RNA processing machinery of chronic lymphocytic leukemia. Leukemia 2013;27:1600-1603.

  41. Villamor N, Conde L, Martinez-Trillos A, Cazorla M, et al. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia 2013;27:1100-1106.

  42. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;489:57-74.

  43. Siggens L, Ekwall K. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project. J Int Med 2014;276:201-214.

  44. Hattori N, Ushijima T. Compendium of aberrant DNA methylation and histone modifications in cancer. Biochem Biophys Res Commun 2014;1016.

  45. Ziller MJ, Gu H, Muller F, Donaghey J, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 2013;500:477-481.

  46. Martin-Subero JI, Lopez-Otin C, Campo E. Genetic and epigenetic basis of chronic lymphocytic leukemia. Curr Opin Hematol 2013;20:362-368.

  47. Cahill N, Rosenquist R. Uncovering the DNA methylome in chronic lymphocytic leukemia. Epigenetics 2013;8:138-148.

  48. Kulis M, Heath S, Bibikova M, Queiros AC, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nature Genet 2012;44:1236-1242.

  49. Rivera CM, Ren B. Mapping human epigenomes. Cell 2013;155:39-52.

  50. Harrow J, Frankish A, Gonzalez JM, Tapanari E, et al. GENCODE: the reference human genome annotation for the ENCODE Project. Genome Res 2012;22:1760-1774.

  51. Ferreira PG, Jares P, Rico D, Gomez-Lopez G, et al. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res 2014;24:212-226.

  52. Li PP, Wang X. Role of signaling pathways and miRNAs in chronic lymphocytic leukemia. Chin Med J 2013;126:4175-4182.

  53. Naugler WE, Karin M. NF-_B and cancer. In: Gelman EP, Sawyers CL, Rauscher FJ III. Molecular Oncology. Cambridge, UK. Cambridge University Press 2014:336-352.

  54. Xu J, Zhou P, Guo F. Function of alternative NF-_B activity in B cell chronic lymphocytic leukemia cells. Zhonghua Xue Ye Xue Za Zhi 2014;35:40-45.

  55. Zenz T, Eichhorst B, Busch R, Denzel T, et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 2010;28:4473-4479.

  56. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute. Working Group 1996 Guidelines. Blood 2008;111:5446-5456.

  57. Groth C, Fortini ME. Therapeutic approaches to modulating notch signaling: current challenges and future prospects. Semin Cell Dev Biol 2012;23:465-472.

  58. Bonnal S, Vigevani L, Valcarcel J. The spliceosome as a target of novel antitumor drugs. Nat Rev Drug Discov 2012;11:847-859.

  59. Ruden M, Puri N. Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev 2013;39:444-456.

  60. Robak T, Robak P. BCR signaling in chronic lymphocytic leukemia and related inhibitors currently in clinical studies. Int Rev Immunol 2013;32:358-376.

  61. Brown JR, Porter DL, O’Brien SM. Novel treatments for chronic lymphocytic leukemia and moving forward. Am Soc Clin Oncol Educ Book 2014;317-325.

>Journals >Revista de Hematología >Year 2015, Issue 1

· Journal Index 
· Links 

Copyright 2019