Entrar/Registro  
HOME SPANISH
 
Revista Médica del Instituto Mexicano del Seguro Social
   
MENU

Contents by Year, Volume and Issue

Table of Contents

General Information

Instructions for Authors

Message to Editor

Editorial Board






>Journals >Revista Médica del Instituto Mexicano del Seguro Social >Year 2011, Issue 6


Romero-Morelos P, Peralta-Rodríguez R, Mendoza-Rodríguez M, Valdivia-Flores A, Marrero-Rodríguez D, Paniagua-García L, Rodríguez-Cabrales J, Parra-Melquiádez M, Salcedo-Vargas M
The nanotechnology as a support for diagnosis and prognosis in cancer research
Rev Med Inst Mex Seguro Soc 2011; 49 (6)

Language: Español
References: 22
Page: 621-630
PDF: 354.36 Kb.


Full text




ABSTRACT

Recently, technological advances have greatly increased, generating the development of the nanotechnology, which is responsible for the design of structures and materials in the nanometer scale. This creates one of the most important cutting-edge sciences integrating the physics, chemistry, engineering and biology sciences. Specifically the integration with biology, results in a new science called nanobiotechnology, which has as a goal, the nanomedicine, mainly looking for a more precise molecular diagnostic and prognostic processes, as well as the new design of drugs in the personalized medicine field. On the other hand, at molecular level in the medical research, the nanoparticles are the most commonly used as tools, while in the molecular diagnostics are the gold nano particles, paramagnetic nanoparticles and quantum dots, which can be used for diagnosis and treatment of several diseases including cancer diseases. Quantum dots are the most promising tools for diagnosis and therapy in cancer research.


Key words: Nanotechnology, nanomedicine, quantum dots, neoplasms.


REFERENCIAS

  1. Sosheyov O, Levy I. Nanobiotechnology bioinspired devices and materials of the future. New Jersey, EUA: Human Press; 2007.

  2. Poole CP, Owens FJ. Introduction to nanotechnology. Barcelona, España: Reverté; 2007.

  3. Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin Chem 2007;53(11):2002-2009. Disponible en http://www.clinchem.org/cgi/reprint/53/11/2002.pdf

  4. Iga AM, Robertson JHP, Winslet MC, Seifalian AM. Clinical potential of quantum dots. J Biomed Biotechnol 2007;2007 (10):76087. Disponible en http://www.ncbi.nlm. nih. gov/pmc/ articles/PMC2254660/

  5. Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 2006;107(3):459-466.

  6. Douda J, Calva PA, Torchynska TV, Peña Sierra R, de la Rosa-Vázquez JM. Marcadores cuánticos para la detección de cáncer. Superficies y Vacío 2008;21(4) 10-17.

  7. Wu Y, López GP, Sklar LA, Buranda T. Spectroscopic characterization of streptavidin functionalized quantum dots. Anal Biochem 2007;364(2):193-203. Disponible en http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2018650/ ?tool=pubmed

  8. Empedocles SA, Bawendi MG. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 1997; 278(5346):2114-2117.

  9. Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, et al. Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc 2002;124(22):6378-6382.

  10. Rieger S, Kulkarni, RP, Darcy D, Fraser SE, Köster RW. Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev Dyn 2005;234(3):670-681.

  11. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, et al. High-sensitivity bacterial detection using biotintagged phage and quantum dots nanocomplexes. Proc Natl Acad Sci USA 2006;103(13):4841-4845.

  12. Kampani K, Quann K, Ahuja J, Wigdahl B, Khan ZK, Jain P. A novel high throughput quantum dot-based fluorescence assay for quantitation of virus binding and attachment. J Viral Methods 2007;141(2):125-132. Disponible en: http://www. ncbi.nlm.nih.gov/pmc/articles/PMC1975807/?tool= pubmed

  13. Zhang CY, Johnson LW. Homegenous rapid detection of nucleic acids using two-color quantum dots. Analyst 2005;131(4):488-488.

  14. Liang RQ, Li W, Li Y, Tan CY, Li JX, Jin YX. et al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dots and nanogold probe. Nucleic Acids Res 2005;33(2):e17. Disponible en http://www. ncbi.nlm.nih.gov/pmc/articles/PMC548377/?tool=pubmed

  15. Rangel-López A, Piña-Sánchez P, Salcedo M. Variaciones genéticas del gen supresor de tumores TP53: relevancia y estrategias de análisis. Rev Inv Clin 2006;58 (3):254-264.

  16. Sengupta S, Sasisekharan R. Exploiting nanotechnology to target cancer. Br J Cancer 2007;96(9):1315-1319.

  17. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 2005;16(1):63-72.

  18. Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 2008;49(6 Suppl 2):113S-28S.

  19. Tada H, Higuchi HT, Wanatabe M, Ohuchi, N. In vivo realtime tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 2007;67(3):1138-1144.

  20. Zhelev Z, Ohba H, Bakalova R, Jose R, Fukuoka S, Nagase T, et al. Fabrication of quatum dot-lectin conjugates as novel florescent probes for microscopic and flow cytometric identification of leukemia cells from normal lymphocytes. Chem Commun 2005(15):1980-1982.

  21. Juzenas, P, Chen W, Sun YP, Coelho MA, Generalov R, Christensen IL. Quantum dots and nanoparticles for photodynamic and radiation therapies of cáncer. Adv Drug Deliv Rev 2008;60(15)1600-1614.

  22. Matsuno A, Itoh J, Takekoshi S, Nagashima T, Osamura RY. Three-dimensional imaging of the intracelular localization of growth hormone and prolactin and their mRNA using nanocrystal (Quantum dot) and confocal laser scanning microscopy techniques. J Histochem Cytochem 2005;53 (7):833-838.






>Journals >Revista Médica del Instituto Mexicano del Seguro Social >Year 2011, Issue 6
 

· Journal Index 
· Links 






       
Copyright 2019