Entrar/Registro  
HOME SPANISH
 
Ginecología y Obstetricia de México
   
MENU

Contents by Year, Volume and Issue

Table of Contents

General Information

Instructions for Authors

Message to Editor

Editorial Board






>Journals >Ginecología y Obstetricia de México >Year 2017, Issue 05


Sánchez-Usabiaga RA, González-Becerra JE, Vera-Aguado MG, Ramírez EG, Durand-Montaño C
Incidence and parental origin of aneuploidies in blastocysts: comparison between two centers of assisted reproduction in Mexico
Ginecol Obstet Mex 2017; 85 (05)

Language: Español
References: 29
Page: 289-297
PDF: 205.51 Kb.


Full text




ABSTRACT

Objetive: To determine the incidence and origin of aneuploidies in blastocysts of two assisted reproduction centers in México.
Material and Methods: Retrospective cohort study. In the period from january 2014 to December 2015, we incluided blastocysts on day 5 and day 6 of developmet, analyzed with preimplantation genetic screening; in two assisted reproduction centers. Blastocysts biopsied on day 7 and embryos that did not perform genetic diagnosis made, were excluded. The comparison of continuous variables: “T of student”, categorical: χ2.
Results: Were analized 450 blastocysts obtained from 80 patients. In center A, 132 blastocysts were on day five and 108 on day six; In the center B; 94 blastocysts were on day five and 116 on day six. Maternal age was higher in center A (37.3 ± 3.8 vs 32.4 ± 5.6 years, p ‹0.05). The total incidence of aneuploid blastocysts was similar in both centers; By differentiating between embryos from day five and day six if there was difference. The center A presented aneuploid blastocysts increase of day 6 compared with blastocysts of day 5 (61.1 vs 36.3%, p ‹0.05). In Center B the incidence of aneuploid embryos was similar between blastocysts from day 5 and 6 (48.9 vs 43.1; p › 0.05). In both centers, the main origin of aneuploidies was the maternal cause (center A, 68.7%, center B, 60.75%), followed by mixed origin (center A, 19.65%, center B, 28.1%) and finally of paternal cause (center A, 11.6%, center B, 11.1%).
Conclusions: The incidence of embryonic aneuploidies between embryos from day 5 and day 6 was different between centers. The origin was mainly maternal, followed by mixed and paternal.


Key words: Embryo, Preimplantation genetic screening (PGS), Implantation, Blastocyst, Aneuploidy, Chromosome.


REFERENCIAS

  1. Vanneste E, Voet T, Le Caignec C, Ampe M Koning P, Melotte C, Debrock S, Amyere M, Vikkula M, Schuit F, Fryns J, Verbeke G, DHooghe T, Moreau Y, Chromosome instability is common in human cleavage-stage embryos. Nature Medicine, 2009; 15 (5): 577-583.

  2. Demko Z, Simon A, McCoy R, Petrov D, Rabino M, Effects of maternal age on euploidy in a large cohort of embryos analyzed with 24-chromosome single-nucleotide polymorphioms- based preimplantation genetic screening, Fertility and Sterility, 2016; 105 (5): 1307-1313.

  3. Baart E, Martini E, Berg L, Macklon N, Galjaard R Fauser B, Opstal D, Preimplantation genetic screening reveal a high incidence of aneuploidy and mosaicism in embryos from young woman undergoing IVF, Human Reproduction, 2006; 1: 223-233.

  4. Yang Z, Liu J, Collins G, Salem S, Liu X, Lyle S, Peck A, Sills E, Salem R, Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study, Molecular Cytogenetics, 2012; 5 (24): 1-8.

  5. Menasha J, Levy B, Hirschhorn K, Kardon NB. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genetics in Medicine, 2005; 7: 251–63.

  6. Barbash S, Frumkin T, Malcov M, Yaron Y, Cohen T, Azem F, Amit A, Ben D, Preimplantation aneuploid embryos undergo selft-correction in correlation with their developmental potential, Fertility ans Sterility, 2009; 92 (3): 890-896.

  7. Taylor T, Patrick J, Gitlin S, Wilson J, Crain J, Griffin D, Comparison of aneuploidy, pregnancy and live birth rates between day 5 and day 6 blastocysts, Reproductive Bio- Medicine Online, 2014; 29: 305-310.

  8. Su Y, Jian-jun L, Wang C, Haddad G, WEI-Hua W, Aneuploidy analysis in day 7 human blastocysts produced by in vitro fertilization, Reproductive Biology and Endocrinology, 2016: 14 (20); 1-7.

  9. Piccolomini M, Nicolielo M, Bonetti T, Motta E, Serafini P, Alegretti J, Does slow embryo development predict a higt aneuploidy rate on trophectoderm biopsy?, Reproductive BioMedicine online, 2016: 33 (3); 398-403.

  10. Kroener L, Ambartsumyan G, Briton C, Dumesic D, Surrey M, Munne S, Hill D, The effect of timing of embryonic progression on chromosomal abnormality, Fertility and Sterility, 2012: 98 (4); 876-880.

  11. Campbell I, Stewart J, James R, Lupski J, Stankiewicz P, Olofsson P, Shaw C, Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics, The American Journal of Human Genetics, 2014: 95; 345-359.

  12. Tylor T, Gitlin S, Patrick J, Crain J, Wilson J, Griffin D, The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans, Human Reproduction Update, 2014: 20 (4); 571-581.

  13. Munne S, Held K, Magli C, Ata B, Wells D, Fragouli E, Baukloh V, Fischer R, Gianaroli L, Intra-age, intercenter, and intercycle differences in chromosome abnormalities in oocytes, Fertility and Sterility, 2012: 97 (4); 935-942.

  14. Hassold T, Hall H, Hunt P, The origin of human aneuploidy: where we have been, where we are going, Human Molecular Genetic, 2007: 16 (2): R203-R208.

  15. Robinson W, Mc Fadden D, Stephenson M, The origin of abnormalities in recurrent aneuploidy/polyploidy, American Society of Human Genetics, 2001; 69 (6); 1245-1254.

  16. Massie J, Shahine L, Milki A, Westphal L, Lathi R, Ovarian stimulation and the risk of aneuploid conceptions, Fertility and Sterility, 2011: 95 (3); 970-972.

  17. Munné S, Magli C, Adler A, Wright G, Boer K, Mortimer D, Ticker M, Cohen J, Gianaroli L, Treatmet-related chromosome abnormalities in human embryos, Human Reproduction, 1997: 12 (4); 780-784.

  18. Telli C, Mehmet E, Nuray B, Yirmibes M, Mesut O, Ahmet E, Onur K, Mustafa C, Gülsün K, Does ovulation induction increase the risk of aneuploid conception? comparison of first trimester miscarriages after FSH stimulated cycles and naturally conceived cycles, International Journal of Womens Health and Reproduction Sciences, 2014: 2 (4); 225-228.

  19. Baart E, Martini E, Eijkemans M, Van Opstal D, Beckers N, Verhoeff A, Macklon N, Fauser B, Milder ovarian stimulation for in vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial, Human Reproduction, 2007: 22 (4); 980-988.

  20. Swain J, Carrel D, Cobo A, Meseguer M, Rubio C, Smith G, Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential, Fertility and Sterility, 2016: 105 (3); 571-587.

  21. Sills E, Li, Frederick J, Khoury C, Potter D, Determining parental origin of embryo aneuploidy analysis of genetic error observed in 305 embryos derived from anonymous donor oocyte IVF cycles, Molecular Cytogenetics, 2014; 7 (68): 1-8.

  22. Alonso Á, Bermejo S, Hernández R, Ayala R, González A,Grether P, Diagnóstico citogénetico en aborto espontáneo del primer trimestre, Ginecología y Obstetricia de México, 2011: 79 (12); 779-784.

  23. Chiang T, Schultz R, Lampson M, Meiotic origins of maternal age-related aneuploidy, Biology of Reproduction, 2012; 86 (1): 1-7.

  24. Hassold T, Hunt P, To err (meioticcaly) is human: the genesis of human aneuploidy, Nature Reviews Genetics, 2001: 2; 280-29.

  25. Rabinowitz M, Ryan A, Gemelos G, Hill M, Baner J, Cinnioglu C, Bamjevic M, Potter D, Petrov D, Demko Z, Origins and rate of aneuploidy in human blastomeres, Fertility and Sterility, 2011; 97 (2): 395-401.

  26. López A, Bermejo S, Hernández R, Ayala R, González del Ángel A, González P, Diagnóstico citogenético en aborto espontáneo del primer trimestre, Ginecología y Obstetricia de México 2011:79; 779-784.

  27. Capalbo A, Ubaldi F, Rienzi L, Scott R, Treff N, Detecting mosaicism in trophectoderm biopsies: current challenges and future possibilities, Human Reproduction, 2016: doi:10.1093/humrep/dew250.

  28. Johnson DS, Cinnioglu C, Ross R, Filby A, Gemelos G, Hill M, Ryan A, Smotrich D, Rabinowitz M, Murray MJ, Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass, Molecular Human Reproduction, 2010: 16 (12); 944-949.

  29. Rabinowitz M, Pettersen B, Le A, Gemelos G, Tourgeman D, DNA fingerprint confirmation of healthy livebirth following PGS results indicating trisomy 3 of paternal origin and likely embryo and likely embryo mosaicism, Presented at the Annual Meeting of the Pacific Coast Reproductive Society, April 13-17, 2011; Rancho Mirage, AC.






>Journals >Ginecología y Obstetricia de México >Year 2017, Issue 05
 

· Journal Index 
· Links 






       
Copyright 2019