Entrar/Registro  
HOME SPANISH
 
Ginecología y Obstetricia de México
   
MENU

Contents by Year, Volume and Issue

Table of Contents

General Information

Instructions for Authors

Message to Editor

Editorial Board






>Journals >Ginecología y Obstetricia de México >Year 2019, Issue 01


Recio-López Y, López-Rioja MJ, Sánchez-González CM, Iñiguez- Arteaga EL, Salas-Rosa FS, Chávez-Badiola A
Flow cytometry sorter: results in the key performance indicators of an assisted reproductive technology
Ginecol Obstet Mex 2019; 87 (01)

Language: Español
References: 55
Page: 6-19
PDF: 510.53 Kb.


Full text




ABSTRACT

Objective: To evaluate if the manipulation of gametes with a flow cytometry sorter has a negative effect on the key performance indicators (KPI´s).
Materials and Method: Descriptive and retrospective analysis, in couples undergoing In a Vitro Fertilization (IVF) by ICSI, with sperm selection, using a flow cytometry sorter for sex selection. The study was conducted at the New Hope Fertility Center in Guadalajara and Mexico City, from June 2014 to August 2017. The results were compared with a randomly group without a flow cytometry sorter. KPI´s were evaluated; normal fertilization rate, abnormal (1PN, ≥3 PN), failed fertilization, ICSI damage rate, cleavage rate, blastocyst development rate, implantation rate (cleavage and blastocyst-stage) and live birth rate. A Student's t-test was made for two samples considering significant differences with p ‹ 0.05.
Results: 150 cycles were evaluated. Group 1: ICSI with sperm selection by a flow cytometry sorter (n = 40); Group 2: ICSI without sperm selection (n = 110). Observing with statistical significance a decreased of the KPI´s of Group 1: failed fertilization rate (1.6%), blastocyst development rate (17.4%), implantation rate (cleavage-stage) (10%), implantation rate (blastocyst-stage) (14.2%) and live birth rate (14.5%).
Conclusions: The manipulation of gametes with the flow cytometry sorter, has a negative effect on the assisted reproductive technology KPI´s; specifically, in the blastocyst rate, blastocyst implantation rate and live birth rate.


Key words: Flow cytometer, Key performance indicators, Blastocyst, Implantation.


REFERENCIAS

  1. Hewitt J. Preconceptional sex selection. Br J Hosp Med 1987; 37:151-155.

  2. Eftekhaari TE, et al. Ethical considerations in sex selection. J Edu Health Promot 2015; 4:32-37. doi: 10.4103/2277- 9531.157184.

  3. Sills ES, et al. Sex-selection of human spermatozoa: evolution of current techniques and applications. Arch Gynecol Obstet 1998; 261:109-115. doi: 10.1007/s004040050209.

  4. Kalfoglou AL, et al. Ethical arguments for and against sperm sorting for non-medical sex selection: a review. Reprod Biomed Online 2013; 26:231-239. doi: 10.1016/j. rbmo.2012.11.007.

  5. Dondorp W, et al. ESHRE Task Force on ethics and Law 20: sex selection for non-medical reasons. Hum Reprod 2013; 28:1448-1454. doi: 10.1093/humrep/det109.

  6. Bianchi I, et al. The X chromosome and immune associated genes. J Autoimmun 2012; 38:187-192. doi: 10.1016/j. jaut.2011.11.012.

  7. ftekhaari TE, et al. Ethical considerations in sex selection. J Educ Health Promot 2015; 4:32-35. doi: 10.4103/2277- 9531.157184.

  8. Harper JC. Preimplantation genetic diagnosis. In: Cambridge: Cambridge University Press. United Kingdom; 2009:274-285.

  9. Young SS, et al. Cereal-induced gender selection? Most likely a multiple testing false positive. Proc Biol Sci 2009; 276:1211-1214. doi: 10.1098/rspb.2008.1405.

  10. Vidal F, et al. Sephadex filtration and human serum albumin gradients do not select spermatozoa by sex chromosome: a fluorescent in-situ hybridization study. Hum Reprod 1993; 8:1740-1743. doi: 10.1093/oxfordjournals.humrep. a137926.

  11. De Jonge CJ, et al. Failure of multi tube sperm swim-up for sex pre selection. Fertil Steril 1997; 67:1109-1114. doi: 10.1016/S0015-0282(97)81447-1.

  12. Hossain AM, et al. Preconceptional sex selection: past, present, and future. Arch Androl 1998; 40:3-14. PMID: 9465998. doi: 10.3109/01485019808987923.

  13. Rodríguez, et al. Fertilization rates and in vitro embryo production using sexed or non-sexed semen selected with a silanecoated silica colloid or Percoll. Theriogenology 2012; 78:165-171. doi: 10.1016/j.theriogenology.2012.01.033.

  14. Sharma R, et al. Effect of sperm storage and selection techniques on sperm parameters. Syst Biol Reprod Med 2015; 61:1-12. doi: 10.3109/19396368.2014.976720.

  15. Ginsburg ES, et al. Use of preimplantation genetic diagnosis and preimplantation genetic screening in the United States: a Society for Assisted Reproductive Technology Writing Group paper. Fertil Steril 2011; 96:865-868. doi: 10.1016/j. fertnstert.2011.07.1139.

  16. Harper JC, et al. The ESHRE PGD Consortium: 10 years of data collection. Hum Reprod Update 2012; 18:234-247. doi: 10.1093/humupd/dmr052.

  17. Schoolcraft W, et al. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril 2010; 94:1700-1706. doi: 10.1016/j.fertnstert. 2009.10.015.

  18. Schoolcraft WB, et al. Live birth outcome with trophectoderm biopsy, blastocyst vitrification, and single-nucleotide polymorphism microarray–based comprehensive chromosome screening in infertile patients. Fertil Steril 2011; 96:638-640. doi: 10.1016/j.fertnstert.2011.06.049.

  19. Schoolcraft W, Katz-Jaffe M. Comprehensive chromosome screening of trophectoderm with vitrification facilitates elective single-embryo transfer for infertile women with advanced maternal age. Fertil Steril 2013; 100:615-619. doi: 10.1016/j.fertnstert.2013.07.1972.

  20. Simpson JL. Preimplantation genetic diagnosis at 20 years. Prenat Diagn 2010; 30:682-695. doi: 10.1016/j. rbmo.2010.07.007.

  21. Handyside AH, et al. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 1990; 244:768-770. doi: 10.1038/344768a0.

  22. Verlinsky Y, et al. 1990. Analysis of the first polar body: preconception genetic diagnosis. Hum Reprod 1990; 5:826-829. doi: 10.1093/oxfordjournals.humrep.a137192.

  23. Watkins AM, et al. Analysis of the flow cytometer stain Hoechst 33342 on human spermatozoa. Mol Hum Reprod 1996; 2:709-712. doi: 10.1093/molehr/2.9.709.

  24. Pinkel D, et al. High-resolution DNA measurements of mammalian sperm. Cytometry 1982;3:1-9. doi: 10.1002/ cyto.990030103.

  25. Patente de Microsort®. Disponible en: http://www.google. com/patents/US6372422

  26. Johnson LA, et al. Flow analysis of X and Y chromosome bearing sperm for DNA using an improved preparation method and staining with Hoechst 33342. Gamete Res 1987;17: 203-212. doi: 10.1002/mrd.1120170303

  27. Johnson LA, et al. Gender preselection in humans? Flow cytometric separation of X and Y spermatozoa for the prevention of X-linked diseases. Hum Reprod 1993; 8:1733- 1739. doi: 10.1097/00006254-199405000-00023.

  28. Levinson G, et al. DNA based X-enriched sperm separation as an adjunct to preimplantation genetic testing for the prevention of X-linked disease. Hum Reprod 1995; 10:979- 982. doi: 10.1093/molehr/1.2.59.

  29. Fugger EF, et al. Births of normal daughters after Micro- Sort sperm separation and intrauterine insemination, in-vitro fertilization, or intracytoplasmic sperm injection. Hum Reprod 1998; 30:2367-2370. doi: 10.1093/ humrep/13.9.2367.

  30. Bathia R. Gender before birth. In: Washington: Washington University Press. United States of America; 2018.1-34.

  31. Sumner AT, Robinson JA. A difference in dry mass between the heads of X- and Y-bearing human spermatozoa. J Reprod Fertil 1976; 48:9-15. doi: 10.1530/jrf.0.0480009.

  32. Johnson LA, et al. Flow sorting of X and Y chromosomebearing spermatozoa into two populations. Gamete Res 1987; 16:1-9. doi: 10.1002/mrd.1120160102.

  33. Watkins AM, et al. Analysis of the flow cytometer stain Hoechst 33342 on human spermatozoa. Mol Hum Reprod 1996;2:709-711. doi: 10.1093/molehr/2.9.709.

  34. De Geyter C, et al. First successful pregnancy in Switzerland after prospective sex determination of the embryo through the separation of X-chromosome bearing spermatozoa. Swiss Med Wkly 2013; 143:1-4. doi: 10.4414/ smw.2013.13718.

  35. Karabinus DS, et al. The effectiveness of flow cytometric sorting of human sperm (MicroSort®) for influencing a child’s sex. Reprod Biol Endocrinol 2014; 12:1-12. doi: 10.1186/1477-7827-12-106.

  36. Fugger EF. Clinical experience with flow cytometric separation of human X- and Y-chromosome bearing sperm. Theriogenology 1999; 52:1435–1444. doi: 10.1016/S0093- 691X (99)00228-9.

  37. Vidal F, et al. Efficiency of MicroSort flow cytometry for producing sperm populations enriched in X- or Y-chromosome haplotypes: a blind trial assessed by double and triple colour fluorescent in-situ hybridization. Hum Reprod 1998; 13:308-12. doi: 10.1093/humrep/13.2.308

  38. Johnson LA, Schulman JD. The Safety of Sperm Selection by Flow Cytometry. Hum Reprod 1994; 9:758-59. PMID: 7929718.

  39. Schulman JD, Karabinus DS. Scientific aspects of preconception gender selection. Reprod Biomed Online 2005; 10:111-15. doi:10.1016/S1472-6483(10)62217-1.

  40. Karabinus DS. Flow cytometric sorting of human sperm: MicroSort® clinical trial update. Theriogenology 2009; 71:74-79. doi: 10.1016/j.theriogenology.2008.09.013.

  41. Dondorp W, et al. GESHRE Task Force on ethics and Law 20: sex selection for non-medical reasons. Hum Reprod 2013; 28:1448-54. doi: 10.1093/humrep/det109.

  42. Munne S. Flow cytometry separation of X and Y spermatozoa could be detrimental for human embryos. Hum Reprod 1994; 9:758-59. doi: 10.1093/oxfordjournals. humrep.a138590.

  43. Suh TK, et al. High-pressure flow cytometric sorting damages sperm. Theriogenology 2005; 64:1035-48. doi: 10.1016/j.theriogenology.2005.02.002.

  44. Garner DL. Hoechst 33342: the dye that enabled differentiation of living X-and Y-chromosome bearing mammalian sperm. Theriogenology 2009; 71:11-21. doi: 10.1016/j. theriogenology.2008.09.023.

  45. Caroppo E. Sperm sorting for selection of healthy sperm: is it safe and useful? Fertil Steril 2013; 100:3:695-96. doi: 10.1016/j.fertnstert.2013.06.006.

  46. Zhang JJ, et al. Minimal stimulation IVF vs conventional IVF: a randomized controlled trial. Am J Obstet Gynecol 2016; 214:96;1-8. doi: 10.1016/j.ajog.2015.08.009.

  47. Gardner DK, et al. Analysis of blastocyst morphology. In: Human preimplantation embryo selection. London: Informa Healthcare; 2007;79-87.

  48. Gardner DK, Schoolcraft WB. Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol 1999;11:307-11. doi: 10.1016/S0015-0282(97)00438-X.

  49. Rodrigo L, et al. New tools for embryo selection: comprehensive chromosome screening by array comparative genomic hybridization. Biomed Res Int 2014;2014:1-9. doi: 10.1155/2014/517125.

  50. Zegers F, et al. The International Glossary on Infertility and Fertility Care, 2017. Fertil Steril 2017; 108:393-406. doi: 10.1016/j.fertnstert.2017.06.005.

  51. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 2007; 67:73-80. doi: 10.1016/j. theriogenology.2006.09.014.

  52. ESHRE Special Interest Group of Embryology and Alpha Scientists in Reproductive Medicine. The Vienna consensus: report of an expert meeting on the development of ART laboratory performance indicators. Reprod Biomed Online 2017; 35:494-510. doi: 10.1016/j.rbmo.2017.06.015.

  53. López MJ, et al. “Estudio genético preimplantación para aneuploidías: resultados de la transición entre diferentes tecnologías”. Ginecol Obstet Mex 2018;86:96-107. doi: 10.24245/gom.v86i2.1634.

  54. De los Santos MJ, et al. ESHRE Guideline Group on Good Practice in IVF Labs. Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod 2016; 31:685-686. doi: 10.1093/humrep/dew016.

  55. Munné S, et al. Mosaicism: "survival of the fittest" versus "no embryo left behind". Fertil Steril 2016;105:1146-1149. doi: 10.1016/j.fertnstert.2016.01.016.






>Journals >Ginecología y Obstetricia de México >Year 2019, Issue 01
 

· Journal Index 
· Links 






       
Copyright 2019