Acta Ortopédica Mexicana

Telenchana-Chimbo P, Barrera-Carmona C, Cevallos-Quintero E, Jiménez-Prieto F, Solórzano L, Soria C, Soria C
Prevalence of osteoarticular infections by Enterobacteria producing extended-spectrum β-lactamases
Acta Ortop Mex 2019; 33 (4)

Language: Español
References: 27
Page: 232-236
PDF: 152.77 Kb.

[Fulltext - PDF]

ABSTRACT

Introduction: Infections of enterobacteria producing extended-spectrum β-lactamases place a heavy burden on health systems. Little is known in osteoarticular infections, so this work studied the prevalence of these infections in a third-level hospital. Material and methods: Prevalence study in patients of a Traumatology Service during 2016, with infection criteria provided by the CDC in Atlanta, Georgia. The VITEK® 2 AST-N272 (bioMérieux) system was used for bacterial identification at the species level and for antimicrobial susceptibility tests. Results: 7.85% (n = 86) were reported with osteoarticular infections; 22.09% (n = 19) were by enterobacteria BLEEs. An average of 77.1 days of hospitalization (SD 37.7) (46-200 days); isolation of the microorganism occurred 15 days after entry. Sixteen (84.2%) patients had osteomyelitis, three (15.8%) had a prosthetic knee or hip infection. The average number of treatment days was 60 days (21-129 days). Eighteen patients (94.7%) were discharged with resolution of their infectious picture; one patient died with infection over aggregated pneumonia due to carbapenem-resistant K. pneumoniae. Discussion: The prevalence of osteoarticular infections by enterobacteria BLEEs could not be accurately calculated, but we consider it to be within what is expected, infection control measures require higher standards and there is a lack of development programs to use antimicrobials rationally to control the emergence of these pathologies.


Key words: Osteoarticular infection, extended spectrum β-lactamases, enterobacteria, osteomyelitis, carbapenems.


REFERENCES

  1. Oli AN, Eze DE, Gugu TH, Ezeobi I, Maduagwu UN, Ihekwereme CP. Multi-anitibiotic resistant extended-spectrum beta-lactamase producing bacteria pose a challenge to effective treatment of wound and skin infections. Pan Afr Med J. 2017; 27: 66.

  2. WHO. Antimicrobial resistance Global Report on Surveillance. World Health Organization. 2014. Available in: http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf?ua=1.

  3. Pineda-Posada M, Arias G, Suárez-Obando F, Bastidas A, Bastidas A. Factores de riesgo apra el desarrollo de infección de vías urinarias por microorganismos productores de betalactamas de espectro extendido adquiridos en la comunidad, en dos hospitales de Bogotá D.C., Colombia. Biomédica. 2017; 21(3): 141-7.

  4. Idowu O, Onipede AO, Orimolade AE, Akinyoola LA, Babalola GO. Extended-spectrum beta-lactamase orthopedic wound infections in Nigeria. J Glob Infect Dis. 2011; 3(3): 211-5.

  5. Tejada P. Huarcaya J, Melgarjo C, Gonzales L, Cahuana J, Pari R. Caracterización de infecciones por bacterias productoras de BLEE en un hospital de referencia nacional. An Fac Med. 2015; 76(2): 161. Disponible en: http://www.scielo.org.pe/pdf/afm/v76n2/a09v76n2.pdf.

  6. Soria-Segarra C, Soria-Baquero E, Cartelle-Gestal M. High prevalence of CTX-M1 like enzymes in urinary isolates of Escherichia coli in Guayaquil, Ecuador. Microb Drug Resist. 2018; 24(4): 393-402. Available in: https://www.ncbi.nlm.nih.gov/pubmed/?term=soria-segarra.

  7. Pacheco M, León CE. Epidemiología de las infecciones por microorganismos productores de BLEE en el Hospital Vozandes Quito entre los años 2005 y 2009. Rev Med Vozandes. 2011; 22(1): 15-21.

  8. CDC/NHSN surveillance definitions for specific types of infections. 2018. Available in: https://search.cdc.gov/search/?query=osteomyelitis+definition&utf8=✓&affiliate=cdc-main.

  9. Métodos de Detección Fenotípica. Detección de Betalactamasas de espectro extendido (BLEE). Manual de Microbiología Hospital “Luis Vernaza”. 2017; pp. 4-5.

  10. Protocolo de trabajo Red Whonet Argentina. Disponible en: http://antimicrobianos.com.ar/ATB/wp-content/uploads/2014/10/Protocolo-WHONET-consensuado-2017-final.pdf.

  11. Legrand P, Fournier G, Buré A, Jarlier V, Nicolas MH, Decre D, et al. Detection of extended broad-spectrum b-lactamases in Enterobacteriaceae in four French hospitals. Eur J Clin Microbiol Infect Dis. 1989; 8(6): 527-9.

  12. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing M100. 27 th ed. CLSI document M100-S26. Wayne, PA, 2017; pp. 102-103.

  13. Watt C, Loule M, Simor A. Evaluation of stability of ceftazidime (30 μg) and cefotaxime (30 μg) disks impregnated with clavulanic acid (10 μg) for detection of extended spectrum β-lactamase. J Clin Microbiol. 2000; 38: 2996-7.

  14. Álvarez AD. Identificación de betalactamasas de espectro extendido en enterobacterias. Rev Haban Cienc Méd. 2010; [citado 2018 Ene 05]; 9(4): 516-24. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2010000400011&lng=es.

  15. Wadekar M, Naganath M, Venkatesha. Detection of ESBL, MBL and MRSA among isolates of chronic osteomyelitis and their antibiogram. Int J Curr Microbiol App Sci. 2015; 4(10): 289-95.

  16. Veeranna HD, Arif Mohammed, Azeem A. A retrospective analysis of efficacy of non-surgical treatment for diabetic chronic osteomyelitis. J of Evolution of Med and Dent Sci. 2014; 30: 8313-6.

  17. Gopi A, Ul Khair S, Kottileveetil H, Harindranath D, Sabapathy Vi. A clinico-microbiological study of osteomyelitis in a tertiary care hospital in Karnataka. J Evolution Med Dent Sci. 2016; 5: 15-8.

  18. Khatoon R, Khan S, Jahan N. Antibiotic resistance pattern among aerobic bacterial isolates from osteomyelitis cases attending a terciary care hospital of North India with special reference to ESBL, AmpC, MBL and MRSA production. In J Res Med Sci. 2017; 5(20): 482-90.

  19. Ortega-Peña S, Franco-Cendejas R. Características microbiológicas y patrones de resistencia en infecciones de prótesis articular en un hospital de referencia. Cirugía y Cirujanos. 2015; 83(5): 371-7. Disponible en: https://www.sciencedirect.com/science/article/pii/S0009741115001061.

  20. Barbero J, Montero E, Vallés A, Plasencia M, Romanyk J, López J. Infección de prótesis articular en el paciente con fractura de cadera. Diferencias frente a la infección de prótesis electiva. Rev Esp Quimioter. 2016; 29(5): 273-7. Disponible en: http://seq.es/wp-content/uploads/2015/02/seq_0214-3429_29_5_barbero28jul2016.pdf.

  21. Orihuela-Fuchs VA, Medina-Rodríguez F, Fuentes-Figueroa S. Incidencia de infección en fracturas expuestas ajustada al grado de exposición. Acta Ortop Mex. 2013; 27(5): 293-8.

  22. Sanasi-Bhola K, Al-Hasan M, Weisman S, Albrecht H, Berdel R, Albrecth S, et al. Osteomyelitis after open fractures adjusting prophylactic antimicrobial therapy. Open Forum Infectious Diseases. 2015; 2: 1511.

  23. Paterson DL. Resistance in gram-negative bacteria: enterobacteriaceae. Am J Med. 2006; 119(6 Suppl 1): S20-8.

  24. Ghafourian S, Sadeghifard N, Soheili S, Sekawi Z. Extended Spectrum beta-lactamases: definition, classification and epidemiology. Curr Issues Mol Biol. 2015; 17: 11-21.

  25. Lack W, Karunakar M, Angerame M, Seymour R, Sims S, Kellam J, et al. Type II open tibia fractures: immediate antibiotic prophylaxis minimizes infection. J Orthop Trauma. 2015; 29(1): 1-6.

  26. Wu UI, Yang Cs, Chen Wc, Chen Yc, Chang Sc. Risk factors for bloodstream infections due to extended-spectrum betalactamase-producing Escherichia coli. J Microbiol Immunol Infect. 2010; 43(4): 310-6.

  27. Mafulli N, Rapalia R, Zampogna B, Torre G, Albo E, Denaro V. The management of osteomyelitis in the adult. Surgeon. 2016; 14(6): 345-60.