SEX DIFFERENCES IN RAT HEART. DIFFERENT PATTERNS OF CATALYTICALLY ACTIVE CREATINE KINASE ISOENZYMES

Oscar C Ramírez, Esperanza Jiménez

RESUMEN

DIMORFISMO SEXUAL EN EL CORAZÓN DE RATA: PATRONES DIFERENCIALES DE LAS ISOENZIMAS DE LA CREATINA CINASA CATALÍTICAMENTE ACTIVAS

Objetivos. Proponemos que en la rata, la síntesis anaeróbica de ATP mediada por el sistema creatina cinasa/fosfocreatina (CK/PCr) es sexualmente dimórfica durante la maduración y el envejecimiento del corazón. Antecedentes. En función de género, las diferencias morfológicas y funcionales durante el envejecimiento cardiovascular parecen explicar la mayor longevidad de las hembras de los mamíferos y de la mujer. Material y Métodos. Se estudiaron 46 ratas Wistar de ambos sexos, por parejas de peso semejante de 200, 250 y 300 g de peso corporal. Resultados. No se observaron diferencias sexuales en cuanto al peso del corazón y a su contenido de proteínas del sobrenadante post 27 000 xg, en ninguno de los pesos corporales estudiados en la rata. Los cocientes peso cardíaco/peso corporal no mostraron diferencias significativas de género durante todo el estudio. Se encontraron diferencias de la actividad específica de la CK cardíaca solamente a los 257 ± 6 g de peso corporal, debido al decremento de tal actividad en el macho. El corazón de la hembra mostró una mayor variedad de isoenzimas de la CK citosólica en todos los pesos corporales estudiados. En los corazones de rata de ambos sexos se encontraron consistentemente isoenzimas del tipo cerebral BB-CK citosólicas fuertemente teñidas catalíticamente, durante todo el estudio. Este hallazgo no está de acuerdo con la aceptada especificidad tisular de la CK cardíaca. Conclusiones. En este trabajo se encontraron diferencias significativas de género, principalmente en cuanto a los patrones y al número de isoformas catalíticas de la CK citosólica del corazón de rata. En relación con los mecanismos anaeróbicos de la producción de ATP, estas diferencias podrían explicar, en parte, la susceptibilidad diferencial sexual al compromiso hemodinámico, en respuesta al estrés cardiovascular, en favor de las hembras.

SUMMARY

Objectives. We hypothesized that the anaerobic ATP synthesis mediated by the creatine kinase/phosphocreatine (CK/PCr) system is sexually dimorphic during maturation and aging of the rat heart. Background. Gender-related morphological and functional differences in cardiovascular aging seem to explain the greater longevity of mammalian females, including women. Material and Methods. By means of heart CK specific activity and cytosolic CK isoenzyme analyses we studied 46 male and female Wistar rats of similar weight divided in groups of 200, 250, and 300 g of body weight. Results. No sex differences were observed in heart weight and post 27 000 g heart protein content at any studied weight. Heart/ body weight ratios did not show any significant gender difference along the study. Differences of heart CK specific activity were found only at 257 \pm 6 g of rat body weight due to a decrease of the male enzyme activity. The female heart showed a larger variety of cytosolic CK isoenzymes at any studied weight. Heavily catalytically stained BB-CK type cytosolic isoenzymes were consistently found in the heart of rats of either sex at the studied weights, contrarily to the accepted view of CK tissue specificity. Conclusions. In this work, significant gender differences were mainly found in the patterns and number of catalytical cytosolic CK cardiac isoforms. Regarding the alternate anaerobic mechanism of ATP production, these differences may explain in part the sex differential susceptibility to hemodynamic compromise in response to cardiovascular stress, in favor of females.

Departamento de Bioquímica. CINVESTAV-IPN Av. Instituto Politécnico Nacional No. 2508. México, D.F. 07340. Tel: (525) 747 3800 x 5216, Fax: (525) 747 7083 E-mail: oramirez@mail.cinvestav.mx Aceptado: 1 de febrero del 2000.

RESUME

Dimorphisme sexuel dans le coeur du rat: patrons differentiels des isoenzimes de la creatine cinase catalytiquement actives

Objectifs. Nous proposons que la synthèse anaérobique de l'ATP, faite au moyen du système créatine cinase/phosphocréatine (CK/PCr), est sexuellement dimorphique pendant la maturation et le vieillissement du coeur du rat. Antécédents. Les différences morphologiques et fonctionelles pendant le vieillissement cardiovasculaire semblent expliquer la longevité accrue des mammifères femelles et des femmes. Méthodes. Nous avons étudié 46 Wistar rats, mâles et femelles, de poids semblable de 200, 250 et 300 g, au moyen d'analyses d'activité spécifique de la CK du coeur et des isoenzimes de la CK cytosolique. Résultats. On n'a trouvé aucune différence sexuelle en ce qui concerne le poids et le contenu protéique du surnageant de 27 000 X g du coeur pour tous les poids des rats compris dans cette étude. Les rapports de poids coeur/corps n'ont montré aucune différence significative du genre pendant l'étude. Une différence dans l'activité spécifique de la CK du coeur a été trouvée seulement pour le poids du rat de 257 \pm 6 g, due à la diminution de l'activité enzymatique des mâles. Les coeurs des femelles ont montré, pour tous les poids étudiés, une plus grande varieté d'isoenzymes de la CK cytosolique. Des enzymes du type BB-CK, teintes catalytiquement, ont été trouvées systématiquement dans les coeurs des rats des deux genres pour tous les poids étudiés, en contradiction avec l'idée acceptée couramment de la specificité tissulaire de la CK. Conclusions. Des différences significatives du genre ont été trouvées dans les patrons et dans le nombre d'isoformes catalytiques cytosoliques de la CK surtout en faveur des femelles.

Palabras clave: Creatina cinasa. Isoenzimas. Corazón. Dimorfismo sexual. **Key words:** Creatine kinase. Isoenzymes. Heart. Sex dimorphism.

INTRODUCTION

P revious studies have investigated age-related differences in cardiovascular performance, but the impact of gender on such age-associated cardiovascular changes remains incompletely covered. Other studies have investigated sex-related differences in cardiovascular morphology 7,8 and function 9-14 in young adults.

The importance of gender-related differences during cardiovascular aging may help to explain partially the greater longevity of women and females of most mammalian species.¹⁵

ATP is the universal energy currency for the energy-requiring processes in biological systems. ¹⁶ Excitable cells and tissues, like skeletal and cardiac muscle, neural cells and electrocytes, depend on the immediate availability of vast amounts of energy that may be used in a pulsed or fluctuating manner. In the heart, that process begins since the very first embryonic myocardial beat until the end of life.

Simply increasing intracellular concentration of ATP for energy storage would represent a bad choice to meet the energy requirements of the above mentioned type of cells and tissues, since local concentrations of ATP, ADP, and adenylate monophosphate (AMP), as well as the ATP/ADP ratio, are key regulators that influence fundamental metabolic processes. 17,18 However, excitable cells contain only 2-5 mM concentration of ATP, which would be enough for a muscle contraction of only a few seconds.¹⁹ Instead, large quantities of metabolically "inert" phosphagens are accumulated in these cells or tissues.²⁰ Phosphocreatine (PCr) is the sole phosphagen in vertebrates and some invertebrate species. In skeletal muscle, PCr concentrations are about 30 mM or more,²¹ whereas in brain, electrical organ, and smooth muscle, PCr is in the range of 5-10 mM.²² Although the cell pools of ATP are rather small, no significant changes in overall ATP levels are detected during activation of excitable cells,²³ because ATP is efficiently replenished from the large PCr pools.

In most muscles, the ATP regeneration capacity of creatine kinase (CK) by transphosphorylation is very high and considerably exceeds both ATP utilization and ATP replenishment by oxidative phosphorylation and glycolysis.²⁴ For example, the maximal rate of ATP synthesis by the CK reaction

$$MgADP - + PCr^{2-} + H^{+ *}MgATP^{2-} + Cr$$

in rat cardiac muscle (30 μ mol s⁻¹ g⁻¹) is much higher than the maximal rate of ATP synthesis by oxidative phosphorylation (2.5 μ mol s⁻¹ g⁻¹) or by *de novo* pathways (0.39 μ mol s⁻¹ g⁻¹).²⁵⁻²⁷ In addition to regeneration of hydrolyzed ATP, the CK/ PCr system, with CK as a low-threshold ADP sensor (Km of skeletal muscle-CK [MM-CK] for ADP is 10-35 μ M or 10⁻⁵M),^{28,29} plays a critical role in preventing an elevation of ADP concentration during transient periods in which energy utilization exceeds energy production. By maintaining the ATP/ADP ratio high in the vicinity of an ATPase, CK increases the thermodynamic efficiency of ATP hydrolisis

$$DG = DG_{obs} - RT \cdot ln [ATP]/[ADP] \cdot [Pi]^{30}$$

The dimeric cytosolic CK isoenzymes are thought to be tissue-specific:

MM-CK for mature skeletal muscle, MB-CK for myocardial cells, and BB-CK for brain tissues. 31,32 CK isoenzymes are in part concentrated and specifically localized at sites of energy consumption as well as those of energy production.³³ In heart cells, generally depending on oxidative metabolism, energy derived from glycolysis can contribute to some extent to the maintenance of high energy phosphate levels and contractility if oxidative phosphorylation of myocardial cells is inhibited.³⁴ Nevertheless, the glycolytic flux and the functional coupling of CK, seen at low PCr/creatine ratios, is suppressed when respiration is normal and the PCr/ creatine ratio is high. As a low threshold sensor of ADP, CK in heart is also exerting some control over the glycolytic flux.35

In the present study we hypothesized that the transphosphorylation mechanisms mediated by the CK/PCr system are sexually dimorphic during the physiological maturation and aging of the rat heart. Weight and sex-dependent differential cCK isoenzyme transition patterns were expected to occur accordingly during the studied period of life, contrarily to the idea of the post-natal "mature cytosolic CK tissue-specificity". Previously, but not as a function of sex, physiological complete isoenzyme transition of brain CK was demonstrated in the Wistar rat beginning after three months of age.³⁶

MATERIAL AND METHODS

The changes in serum concentration of thyroid hormones (T_4 , T_3 and reverse T_3) and in hemoglobin and hematocrit levels are not related to chronological age, but more adequately interpreted in terms of body height, weight, and surface area in human adolescents of either sex. They may represent adaptive changes directed toward energy production and conservation. ^{37,38} The CK/PCr system is directly involved in both processes.

Animals studied

Based on the above mentioned premise, to compare ponderal and biochemical parameters, male and female Wistar rats (CINVESTAV-IPN), with weights ranging from 200 to 303 g, were studied. To prevent circadian rhythm problems, pairs of opposite sex and similar body weight were systematically killed between 8:30 and 9:00 h. A careful dissection and removal of heart was performed before this organ was transferred through a series of Ringer and 0.145 M NaCl solutions at 4°C, until blood or extraneous loose tissue had disappeared. The heart was rapidly minced with scissors and homogenized at an approximate ratio of 1:6 (w/v) with 0.1M KCl at 4°C in a "45" Virtis apparatus (45 000 rpm). Thirty per cent of this speed was employed for 2 minutes, with a 5 seconds rest interval between minutes.

Biochemical procedures

The homogenate was centrifuged for 30 min at 4°C at 27 000 x g, in either a Beckman I2-21 or a Sorvall DC2B models, to eliminate nuclei, cell debris, and heavy and light mitochondria.^{39,40} Aliquots of this supernatant (SN₁) were used as the source for the CK assay and protein determination.36 The SN, was ultracentrifuged for 60 minutes at 4°C at 125 000 x g in an OTD-65B Sorvall model. Samples were taken from this high speed supernatant (SN₂), immediately, to separate the cytosolic CK isoenzymes by zone electrophoresis using cellulose polyacetate strips, since preparations cold stored for more than 24 h can produce spurious cytosolic CK dimeric hybrids.³⁶ The presence of contaminating mitochondrial CK in post 116 000 x g supernatants has been excluded by protein immunoblot analysis. 41 After electrophoresis for 120 min, the strips were catalytically stained for CK using overlay reaction gels containing hexokinase and glucose-6-phosphate dehydrogenase as the coupling enzymes in the forward reaction for CK at pH 7.2,⁴² and AMP to inhibit adenylate kinase activity.³⁹ To exclude interference by co-migration of other enzymes or nonspecific staining, appropriate blanks were prepared from each sample. Treatment of these controls was identical to the problems, except that PCr was omitted from the incubation mixture.³⁶

Data analysis and statistics

The results (mean \pm SD) were analyzed for gender differences. Statistical methods were completed using one way ANOVA. A value p < 0.05 was considered to be statistically significant.

RESULTS

The heart wet weight was similar in male and female rats at about 200 and 303 g of body weight. At about 257 g, the male heart weight seemed to be larger but it resulted non significant (*Table I*). When heart weight was normalized for SN₁ protein content non significant differences were found between males and females at any of the above selected body weights (*Table II*). When heart masses were normalized dividing by body weights, the ratios did not show significant differences between males and females (*Table III*).

The weight-dependent changes in heart CK specific activity are illustrated in *Table IV*. Sex differences of CK activity were found only at about 257 g of rat body weight (about 180 days for

Table I. Heart Weight of Wistar Rat.

Body Weight (g)	Male (g)	Female (g)	p Value
200 ± 8 (23)	0.80 ± 0.10 (10)	0.77 ± 0.02 (13)	NS
257 ± 6 (10)	0.90 ± 0.01 (5)	0.82 ± 0.06 (5)	NS
303 ± 8 (13)	0.99 ± 0.08 (5)	0.90 ± 0.07 (8)	NS

Body and heart weight data are mean values \pm SD. The number of animals is given in parenthesis.

Table II. SN, Protein per Heart of Wistar Rat.

Body Weight (g)(mg prote	t Male in) (mg protein)	Female	p Value
200 ± 8 (23)	30.75 ± 6.45 (10)	31.40 ± 4.55 (13)	NS
257 ± 6	20.30 ± 4.05	23.70 ± 2.45	NS
(10) 303 ± 8	(5) 37.15 ± 6.40	(5) 30.30 ± 4.80	NS
(13)	(5)	(8)	

Body weight and total SN_1 protein data are mean values \pm SD. The number of animals is given in parenthesis. SN_1 = post 27 000 x g supernatant of each homogenized heart.

Table III. Heart/Body Weight Ratios (10⁻³) of Wistar rat.

Body Weight (g)	Male	Female	p Value
200 ± 8	3.85 ± 0.59	3.98 ± 0.14	NS
(23) 257 ± 6	(10) 3.54 ± 0.12	(13) 3.16 ± 0.27	NS
(10)	(5)	(5)	110
303 ± 8	3.24 ± 0.26	2.94 ± 0.19	NS
(13)	(5)	(8)	

Body Weight and Heart/Body weight data are mean values \pm SD. The number of animals is given in parenthesis.

Table IV.
Rat Cardiac CK Specific Activity.

Body Weight (g)	Male	Female	p Value
	145 ± 0.017	0.139 ± 0.030	NS
	(10) 083 ± 0.016	$\begin{array}{c} (13) \\ 0.192 \pm 0.030 \end{array}$	< 0.0001
(10) 303 ± 8 $0.$	(5) 113 ± 0.040	(5) 0.137 ± 0.022	NS
(13)	(5)	(8)	

CK specific activity (D μ mol PCr \times min⁻¹ \times mg⁻¹) was determined as described in Methods. Data are presented as mean values \pm SD. Differences in CK specific activity were found only at 257 \pm 6 g of rat body weight. The number of animals is given in parenthesis.

the male and 400 days for the female). The female heart CK specific activity was 2.3-fold the amount found in the male heart. Furthermore at the same rat weight, it must be emphasized that a decrease in CK activity occurred in the male heart, as compared to its respective CK specific activity value at about 200 g of body weight.

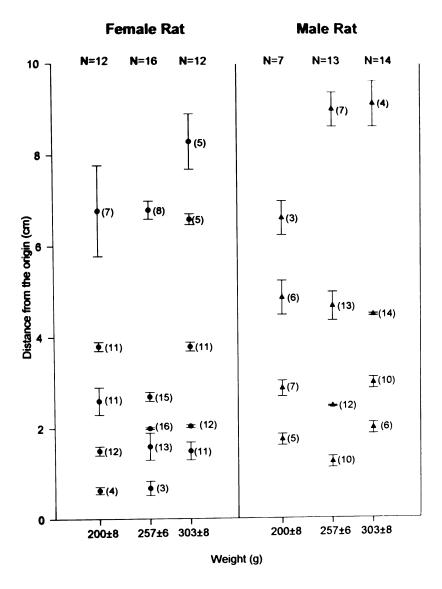


Fig. 1: Female hearts showed a larger variety of cytosolic CK isoenzymes at any studied weight. Samples were taken from the post 125 000 x g supernatant to separate the cytosolic CK isoenzymes according to the protocol described in Methods. Circles = female rats; triangles = male rats. The number of animals is given in parenthesis. Vertical bars=SD.

Regarding the catalytical cytosolic CK electrophoretic patterns, migrating from the origin toward the anode, more than two heavily stained bands (the expected "mature tissue-specific" skeletal and cardiac muscle cytosolic CK types) were consistently found in the hearts of male and female rats at all the above mentioned studied weights. Worthy of mention is the fact that female hearts showed a larger variety of cytosolic CK isoenzymes at all studied rat body weights.

The number of catalytical cytosolic CK isoforms was always higher in female hearts (5 bands), as compared to males (4 bands). Also, worth noticing is that along the study, brain type cytosolic CK bands, migrating a long distance from the origin toward the anode (more than 6

cm on the cellulose polyacetate strips), were found in both sexes confirming previous results obtained in the brain of rats of similar body weights,³⁶ as well as atypical migrating ones, as shown in *Figure 1*.

Representative cytosolic CK isoenzyme patterns of each sex are shown in *Figures 2 and 3*. In no case did spurious staining of NADPH appear in the blanks.

DISCUSSION

In an earlier study,¹ the polyacrylamide gel electrophoretograms of heart cytosolic proteins from rats of opposite sex, with similar body weights (no more than 15 g of difference, between 200 and 320

g), differed in the number and position of the protein bands, possibly reflecting differential epigenetic cardiac control of protein synthesis at the selected rat weights. In the present work, it is shown that male and female rat hearts of similar body weights (comparable to the above mentioned ones) did not differ significantly in relation to heart wet weight, total SN_1 protein per heart, and heart weight/body weight ratios along the study.

The relevance of the rat sexually dimorphic cardiac protein polyacrilamide gel electrophoresis patterns above mentioned notwithstanding, these ponderal findings are in agreement with changes in serum concentration of thyroid hormones, hemoglobin and hematocrit levels not related to chronological age, but to body weight, height, and surface area of human adolescents of either sex.^{37,38}

In regard to the epigenetic control of catalytically functional protein synthesis in heart

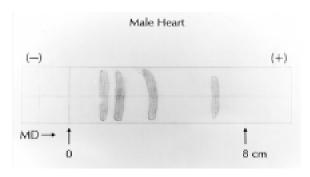


Fig. 2: A pattern of male rat heart electrophoretogram was selected to show a representative example of cytosolic CK isoenzymes. MD = Migration Distance; O = Origin.

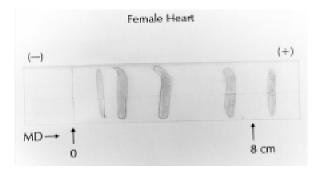


Fig. 3: A complementary pattern of female rat heart electrophoretogram was selected as a representative example of cytosolic CK isoenzymes. MD = Migration Distance, O = Origin.

tissues, one is tempted to speculate that, at about 257 g of body weight, the more than 2-fold higher CK specific activity found in the female rat heart, as compared to the male, is due to cardiac overload. The increase of ventricular mass and of CK activity has been observed in a number of cases in both spontaneously hypertensive rats⁴³ and in artificially induced high blood pressure after constriction of the rat aorta. 44,45 It is thought that muscle cell mass accounts for about 80% of myocardial mass,46 and from data obtained in tissue culture, CK in muscle cells is more than 16-fold higher than in fibroblasts.⁴⁷ Nevertheless, in this study, the heart mass of females at about 257 g of body weight remained in its normal range regarding the parameters shown in *Tables* I, II, and III. Even more, at the same body weight, the male heart with an equivalent weight and protein content exhibited a decrease of CK specific activity of about 43%, as compared to the one exhibited at about 200 g of rat body weight.

443

Considering the rat sexual differences of cytosolic proteins from previous heart polyacrilamide results¹ and the above mentioned ones (regarding increase and/or decrease of heart CK specific activities in healthy normal animals of either sex), one should conclude that, at any time, the epigenetic control of the synthesis of catalytically active heart CK seems to depend on very specific regional ATP replenishment demands in equilibrium with the anaerobic glycolytic pathway and the mitochondrial oxidative phosphorylation capacity. It should be emphasized, however, that an increase in heart CK activity does not necessarily mean that a concomitant pathological ventricular hypertrophy has occurred. 43,44 The opposite consideration is also valid; a decrease in CK specific activity in rat heart is not always directly related to myocardial failure, in spite of the hypothesis that impaired ATP synthesis rates produced by the CK/PCr system is an important mechanism underlying cardiac failure.²⁷ The fine control of ATP replenishment seems to require also the participation of creatine transporter(s). Northern blot analysis has revealed the presence of significant amounts of mRNAs of CHOT1 creatine transporter in muscle-rich tissues of the rat, the heart included.48 The Na+-Cl--dependent plasma membrane creatine transporter with a Michaelis constant of about 35 μ M is also expressed promi-

nently in rabbit heart and in tissues known to possess high creatine uptake capacity.⁴⁹

In order to discuss adequately the electrophoretic results, one must consider the physiological significance of the findings after the analysis of the employed techniques. The presence in the normal rat heart of more than two heavily stained catalytically active cytosolic CK isoforms, at all selected rat weights, seems to confirm previous evidence regarding post-natal rat brain CK isoenzyme transitions.³⁶ In both studies the following parameters were similar: a) animal and strain source, b) agebody weight conditions, c) composition of media for CK extraction, d) isolation and purification of subcellular fractions, e) electrophoretic procedures, and f) isoenzyme visualization techniques.

Age/Body Weight Data and Reference Tables of the Wistar Rat have shown that the heavier animals are older. Specifically, this seems to be the case for Wistar female rats (at about 300 g, female Wistar rats are 16 months old, whereas males are about 11 months old).⁵⁰

To compare protein isoforms from young, adult, and senescent animals with a reasonable degree of confidence, it is necessary to review the literature regarding immunological detection of isoenzymes from aging animals, in contrast to catalytical procedures of the same isoforms. It is well known that the Krebs cycle and anaerobic glycolysis lose capacity with increasing age and with chronic decrease in physical activity.⁵¹ Furthermore, it has been postulated that the error frequency in protein biosynthesis rises with the age of the animal to the point that the resulting protein molecules may be rendered less active or even inactive. This fact has been confirmed specifically with one glycolytic enzyme. Although the total amount of immunologically detectable aldolase remained unchanged in the muscles of aged animals, the isolated aldolase was only one third as active catalytically as aldolase isolated from younger animals.⁵² Glyceraldehyde 3-phosphate dehydrogenase and pyruvate kinase, other two glycolytic enzymes, have also been described as presenting catalytically inactive isoforms during aging.^{53,54} The presence of "antizyme" in the inactivation of ornithine decarboxylase in the mouse brain, which gives rise to active and inactive isoforms, 55 as well as maltase⁵⁶ and glucose 6-phosphate dehydrogenase⁵⁷ are other examples of inactive isoenzymes that are not necessarily participating in a metabolic pathway, although they could be functional parts of cellular structures.

In the case of CK specifically, previous work has also shown that large quantities of antigenically measured brain CK isoforms are catalytically inactive and can be separated from the catalytical CK species by DEAE-cellulose chromatography.⁵⁸

The rat heart cytosolic CK isoenzyme data of the present work represent catalytically active isoforms that can participate physiologically in the CK/PCr system along the studied period. The differential affinities for ADP and PCr of MM, MB, and BB-CK are well documented as shown by their respective Michaelis constants. The brain type (BB-CK), the most anodic one, can produce ATP more actively than the other CK isoenzymes.⁵⁹ Affinities can change in the atypical cCK isoforms, thus affecting the speed of creatine and ATP formation. Atypical catalytical CK isoforms may arise by protein post translational modification(s) of the enzyme, 60,61 as well as by differential splicing of a unique CK gene, 62 or by differences in the transcription starting point of the CK promoter, 63,64 and from alternative ribosomal initiation.⁶⁵

The simultaneous presence of more than one catalytical isoform of cytosolic CK found in the rat heart of both sexes along the study could be associated with a particular local energy demand not completely covered by anaerobic glycolysis and mitochondrial oxidative phosphorylation. In the adult human heart the presence of distinct cytoplasmic CK isoforms, besides the expected ones, has been described depending on the regionalization of the heart. The increase of BB-CK activity has been ascribed to differences in myocardial perfusion during the cardiac cycle in the normal left ventricle, and to a stressed intracellular energy transfer in patients suffering of mitral regurgitation. ⁶⁶

In the old male rats, hearts are larger, thinner, more fibrotic, and with high prevalence of mitral regurgitation with indexes of diminished performance, as compared to female rats. ¹⁵ In regard to blood flow distribution during normothermia and hyperthermia, mature laboratory rabbits showed sex differences in their blood flow regulation in

both peripheral organs which are active in heat dissipation (toe, ear skin, and nasal turbinates), and inner body organs.⁶⁷

Irrespective of the migration distance of catalytically active heart cytosolic CK isoforms shown in *Figure 1*, the larger number and variety of cytosolic CK bands exhibited by the female heart at every studied rat body weight, in comparison to the male heart, seems to indicate that ATP replenishment by means of the CK/PCr system, the female rat heart is better endowed to respond to immediate and fluctuating vast energy requirements to cope with the differential susceptibilities of hemodynamic compromises along life. This finding in regard to energy requiring processes seems to confirm the gender-related anatomical,7,8 and functional mechanisms,9-14 and may explain in part the greater longevity of females of most mammalian species including women.

CONCLUSIONS

The aim of this biochemical study was to understand whether the anaerobic heart ATP synthesis, mediated by the CK/PCr system, is sexually dimorphic during maturation and aging of the rat. In this work, significant gender differences were found mainly in the patterns and number of catalytical cytosolic CK isoforms. Regarding the alternate anaerobic mechanism of ATP production, these differences may explain in part the sex differential susceptibility to hemodynamic compromise in response to cardiovascular stress, in favor of females.

We thank Prof. José A. Pliego for his advice and critical reading of the manuscript, Mr. Jorge Martínez for his excellent technical assistance, and Ms. Gloria E. Arroyo for typing the manuscript.

REFERENCES

- 1. Ramirez O, Licea G, Santos G: Special capabilities of the sexes: differences in the molecular repertoire of mammal brain, heart and skeletal muscle. Arch Invest Méd (Méx) 1981; 12: 377-393.
- WEI JY, SPURGEON HA, LAKATTA EG: Excitation-contraction in rat myocardium: alterations with adult aging. Am J Physiol 1984; 246: H784-791.
- 3. Anversa P, Hiler B, Ricci R, Guideri G, Olivetti G: Myocyte loss and myocyte hypertrophy in the aging rat heart. J Am Coll Cardiol 1986; 8: 1441-1448.
- 4. Capasso JM, Malhotra A, Remily RM, Scheuer J, Sonnenblick EH: Myocardial biochemical, contractile, and electrical performance after imposition of hypertension in young and old rats. Circ Res 1986; 58: 445-460.
- LAKATTA EG: Cardiac muscle changes in senescence. Ann Rev Physiol 1987; 49: 519-531.
- 6. Capasso JM, Malhotra A, Remily R, Scheuer J, Sonnenblick EH: Effects of age on mechanical and electrical performance of rat myocardium. Am J Physiol 1983; 14: H72-81.
- 7. CABRAL AM, VAZQUEZ EC, MOYSIS MR, ANTONIO A: Sex hormone modulation of ventricular hypertrophy in sinoaortic denervated rats. Hypertension 1988; 11 Suppl 1: 1-7.
- Krumholz HM, Larson M, Levy D: Sex differences in cardiac adaptation to isolated systolic hypertension. Am J Cardiol 1993; 72: 310-313.
- 9. Spina RJ, Ogawa T, Miller TR, Kohrt WM, Ehsani AA: Effect of exercise training on left ventricular performance

- in older women free of cardiopulmonar disease. Am J Cardiol 1993; 71: 99-104.
- SPINA RJ, OGAWA T, KOHRT WM, MARTIN HW, HOLLOSZY, EHSANI AA: Differences in cardiovascular adaptations to endurance exercise training between older men and women. J Appl Physiol 1993; 76: 849-855.
- 11. HIGGINBOTHAM MB, MORRIS KG, COLEMAN RE, COBB FR: Sex-related differences in the normal cardiac response to upright exercise. Circulation 1984; 70: 357-366.
- 12. Schaible TF, Scheuer J: Comparison of heart function in male and female rats. Basic Res Cardiol 1984; 79: 402-412.
- 13. Capasso JM, Remily RM, Smith RH, Sonnenblick EH: Sex differences in myocardial contractility in the rat. Basic Res Cardiol 1983; 78: 156-171.
- 14. Scheuer J, Malhotra A, Schaible TF, Capasso JM: *Effects of gonadectomy and hormonal replacement on rat hearts*. Circ Res 1987; 61: 12-19.
- 15. FORMAN DE, CITTADINI A, AZHAR G, DOUGLAS PS, WEI JY: Cardiac morphology and function in senescent rats: Gender-related differences. J Am Coll Cardiol 1997; 30: 1872-1877.
- Lehninger A: Biochemistry 2nd ed., New York: Worth Publishers, Inc., 1975: 7; 387.
- 17. Chance B, Leigh JS Jr, Kent J, Mc Cully K, Nioka S, Clark BJ, et al: Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc Natl Acad Sci USA 1986; 83: 9458-9462.

 FROM AH, ZIMMER SD, MICHURSKI SP, MOHANAKRISHNAN P, ULSTAD VK, THOMA WJ, ET AL: Regulation of the oxidative phosphorylation rate in the intact cell. Biochemistry 1990; 29: 3731-3743.

- Infante AA, Davies RE: The effect of 2-4 dinitrofluorobenzene on the activity of striated muscle. J Biol Chem 1965; 240: 3996-4001.
- MEYER RA: A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol 1988: 254: C548-553.
- FITCH CD, JELLINEK M, MUELLER EJ: Experimental depletion of creatine and phosphocreatine from skeletal muscle. J Biol Chem 1974; 249: 1060-1063.
- 22. IYENGAR MR: Creatine kinase as an intracellular regulator. J Muscle Res Cell Motil 1984; 5: 527-534.
- 23. Mommaerts WF, Wallner A: The breakdown of adenosine triphosphate in the contraction cycle of the frog sartorius muscle. J Physiol. (Lond) 1967; 193: 343-357.
- Mc GILVERY RW, MURRAY TW: Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy by muscle. J Biol Chem 1974; 249: 5845-5850.
- BITTL JA, INGWALL JS: Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31 P NMR magnetization transfer study. J Biol Chem 1985; 260: 3512-3517.
- Ronca G, Ronca-Testoni S: Creatine Phosphate: biochemistry, pharmacology and clinical efficiency. Saks, V. A., Bobkov, Y. G. and Strumia, E., eds. Torino: Edizioni Minerva Medica 1987: 72.
- 27. Ingwall JS, Atkinson DE, Clarke K, Fetters JK: Energetic correlates of cardiac failure: changes in the creatine kinase system in the failing myocardium. Eur Heart J 1990; 11 Suppl B: 108-115.
- 28. Matthews PM, Bland JL, Gadian DG, Radda GK: A 31 P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Biochim Biophys Acta 1982; 721: 312-320.
- 29. Levin RM, Longhurst PA, Levin SS, Haugaard N, Wein AJ: Creatine kinase activity of urinary bladder and skeletal muscle from control and streptozotocin-diabetic rats. Mol Cell Biochem 1990; 97: 153-159.
- Kammermeier H: Why do cells need phosphocreatine and a phosphocreatine shuttle. J Mol Cell Cardiol 1987; 19: 115-118.
- 31. EPPENBERGER HM, DAWSON DM, KAPLAN NO: The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. J Biol Chem 1967; 242: 204-209.
- 32. QUEST AF, EPPENBERGER HM, WALLIMANN T: Two different B-type creatine kinase subunits dimerize in a tissue-specific manner. FEBS Lett 1990; 262: 299-304.
- 33. Turner D, Eppenberger H: Developmental changes in creatine kinase and aldolase isoenzymes and their possible function in association with contractile elements. Enzyme 1973; 15: 224-238.
- 34. Doorey AJ, Barry WH: The effects of inhibition of oxidative phosphorylation and glycolisis on contractility and

- high-energy phosphate content in cultured chick heart cells. Circ Res 1983; 53: 193-201.
- 35. Wallimann T, Wyss M, Brdiczka D, Nicolay K: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the phosphocreatine circuit for cellular energy homeostasis. Biochem J 1992; 281: 21-40.
- 36. RAMIREZ O, LICEA G: Rat brain MM and MB isoenzymes of creatine kinase. Exp Neurol 1982; 77: 225-229.
- 37. PARRA A, ARGOTE MM, GARCIA G, FLETES L, CERVANTES C, ARIAS R: Changes in hemoglobin and hematocrit values in children aged 6 to 13 1/2 years in Mexico City. Ann Human Biol 1976; 3: 543-548.
- 38. Parra A, Villalpando S, Junco E, Urquieta B, Alatorre S, Garcia-Bulnes G: Thyroid gland function during childhood and adolescence. Changes in serum TSH, T4, T3, thyroxine-binding globulin, reverse T3 and free T4 and T3 concentration. Acta Endocrinol 1980; 93: 306-314.
- SINEV MA, SINEVA EV, ITTAH V, HAAS E: Towards a mechanism of AMP-substrate inhibition in adenylate kinase from Escherichia coli. FEBS Lett 1996; 397: 273-276.
- 40. JIMÉNEZ E, RAMÍREZ O: Comparison of creatine kinase specific activity from rat diaphragm, extensor digitorum longus and soleus muscles from puberty to senescence. Bol Estud Med Biol Mex 1996; 44: 75-76.
- 41. Manos P, Bryan GK, Edmond J: Creatine kinase activity in postnatal rat brain development and in cultured neurons, astrocytes, and oligodendrocytes. J Neurochem 1991; 56: 2101-2107.
- 42. Turner DC, Gmur R, Siegrist M, Burckhardt E, Eppenberger HM: Differentiation in cultures derived from embryonic chicken muscle. I. Muscle-specific enzyme changes before fusion in EGTA-synchronized cultures. Dev Biol 1976; 48: 258-283.
- 43. BITTL JA, INGWALL JS: Intracellular high-energy phosphate transfer in normal and hypertrophied myocardium. Circulation 1987; 75 (1 Pt 2):I 96-101.
- 44. Seccia TM, Atlante A, Vulpis V, Marra E, Passarella S, Pirrelli A: Mitochondrial energy metabolism in the left ventricular tissue of spontaneously hypertensive rats: abnormalities in both adeninenucleotide and phosphate translocator and enzyme adenylate kinase and creatinephoshokinase activities. Clin Exp Hypertens 1998; 20: 345-358.
- 45. Fontanet HL, Trask RV, Haas RC, Strauss AW, Abendschein DR, Billadello JJ: Regulation of expression of M, B, and mitochondrial creatine kinase mRNAs in the left ventricle after pressure overload in rats. Circ Res 1991; 68: 1007-1012.
- MEERSON FZ, JAVICH MP: Isoenzyme pattern and activity of myocardial creatine phosphokinase under heart adaptation to prolonged overload. Basic Res Cardiol 1982; 77: 349-358.
- 47. MORKIN E, ASHFORD TP: Myocardial DNA synthesis in experimental cardiac hypertrophy. Am J Physiol 1968; 215: 1409-1413.
- 48. Schloss P, Mayser W, Betz H: The putative rat choline transporter CHOT1 transports creatine and is highly ex-

- pressed in neural and muscle-rich tissues. Biochim Biophys Res Comm 1994; 198: 637-645.
- 49. Guimbal C, Kilimann MW: A Na⁺-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem 1993; 268: 8418-8421.
- Donaldson HH: The rat. Data and reference tables for the albino rat (Mus norvegicus albinus) and the Norway rat (Mus norvegicus). 2nd ed. Philadelphia: Henry H Donaldson 1924; 177.
- 51. Newsholm EA, Blomstrand E, Ekblom B: *Physical and mental fatigue: metabolic mechanisms and importance of plasma aminoacids.* Br Med Bull 1992; 48: 477-495.
- Lehninger AL: Biochemistry 2nd ed. New York: Worth Publishers, Inc., 1975: 952.
- 53. Dovrat A, Scharf J, Gershon D: Glyceraldehyde 3-phosphate dehydrogenase activity in rat and human lenses and the fate of enzyme molecules in the aging lens. Mech Ageing Dev 1984; 28: 187-191.
- 54. Hopkirk TJ, Bloxham DP: Studies in the biosynthesis of hepatic pyruvate kinase and its correlation with enhanced hepatic lipogenesis in meal-trained rats. Biochem J 1979; 182: 383-397.
- LAITINEN PH: Involvement of an "antizyme" in the inactivation of ornitine decarboxylase. J Neurochem 1985; 45: 1303-1307.
- 56. Reiss U, Sacktor B: Monoclonal antibodies to renal brush border membrane maltase: age-associated antigenic alterations. Proc Natl Acad Sci USA 1983; 80: 3255-3259.
- 57. Dovrat A, Scharf J, Eisenbach L, Gershon D. *G6PD molecules devoid of catalytic activity are present in the nucleus of the rat lens.* Exp Eye Res 1984 1986; 42: 489-496.
- 58. Armstrong JB, Lowden JA, Sherwin AL: Brain isoenzyme of creatine kinase. II. Species specificity of enzyme and

- presence of inactive form in striated muscle of rabbit and man. J Biol Chem 1977; 252: 3112-3116.
- MORIN LG: Improved separation of creatine kinase cardiac isoenzyme in serum by fractionation. Clin Chem 1976; 22: 92-97.
- CHIDA K, TSUNENAGA M, KASAHARA K, KOHNO Y, KUROKI T: Regulation of creatine phosphokinase B activity by protein kinase C. Biochem Biophys Res Comm 1990; 173: 346-350.
- 61. QUEST AFG, SOLDATI T, HEMMER W, PERRIARD JC, EPPENBERGER HM, WALLIMANN T: Phosphorylation of chicken brain-type creatine kinase affects a physiologically important kinetic parameter and gives rise to protein microheterogeneity in vivo. Febs Lett 1990; 269: 457-464.
- 62. Wirz T, Brandle U, Soldati T, Hossle JP, Perriard JC: A unique chicken B-creatine kinase gene gives rise to two B-creatine kinase isoproteins with distinct N termini by alternative splicing. J Biol Chem 1990; 265: 11656-11666.
- 63. MITCHELL MT, BENFIELD PA: Two different RNA polimerase II initiation complexes can assemble on the rat brain creatine kinase promoter. J Biol Chem 1990; 265: 8259-8267.
- 64. Mariman E, Wieringa B: Expression of the gene encoding human brain creatine kinase depends of sequences immediately following the transcription start point. Gene 1991; 102: 205-212.
- 65. SOLDATI T, SHAFER BW, PERRIARD JC: Alternative ribosomal initiation gives rise to chicken brain-type creatine kinase isoproteins with heterogeneous amino termini. J Biol Chem 1990; 265: 4498-4506.
- 66. SYLVEN C, LIN L, KALLNER A, SOTONYI P, SOMOGYI E, JANSSON E: Dynamics of creatine kinase shuttle enzymes in the human heart. Eur J Clin Invest 1991; 21: 350-354.
- 67. Lublin A, Wolfenson D, Berman A: Sex differences in blood flow distribution of normothermic and heat-stressed rabbits. Am J Physiol 1995; 268: R66-71.