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Resumen

La insuficiencia cardiaca es un desorden com-
plejo en el que participan respuestas mal adap-
tadas que llevan a regulacion y funcién defec-
tuosa de multiples sistemas bioldgicos. La com-
prension adecuada de estos procesos es
primordial para el desarrollo de nuevas con-
ductas terapéuticas. Esta revision, dirigida a la
biologia molecular del propio corazén, se divi-
de en tres apartados, con cierta redundancia
entre si: hipertrofia y remodelacion, composi-
cion molecular del corazén insuficiente, y me-
canismos moleculares que llevan a la insufi-
ciencia cardiaca.

Summary

MOLECULAR BIOLOGY OF HEART FAILURE

Heart failure is a complex disorder involving
maladaptive responses that result in defective
regulation and function of multiple biological
systems. Adequate understanding of these pro-
cesses is basic for the development of novel
therapeutic approaches. This review, directed
to the molecular biology of the heart, is divided
in three sections, with some redundancy be-
tween them: hypertrophy and remodeling, mo-
lecular composition of the failing heart, and
molecular mechanisms leading to heart failure.
(Arch Cardiol Mex 2007; 77, S4, 94-105)
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Transduction signals.

a insuficiencia cardiaca (IC) es un sin-

drome heterogéneo y complejo, con pre-

valencia en aumento, y prondstico peor
que la mayoria de los cdnceres. Se caracteriza
por activacién neuroendocrina,? y la mayor
parte de su tratamiento actual se basa en este
paradigma.’ Esta revisién se enfoca sélo a cier-
tos aspectos de la biologia molecular de la IC a
nivel del propio corazén, y pretende poner en
perspectiva sus importantes avances. Para pro-
positos didacticos se ha dividido en tres apar-
tados, que tienen cierta redundancia entre si:
Hipertrofia y remodelacién ventricular, com-
posicién molecular (fenotipo) del corazén insu-
ficiente, y mecanismos moleculares que llevan
a la insuficiencia cardiaca.

Hipertrofiay remodelacion ventricular
La mayoria de los tipos de insuficiencia miocar-
dica son precedidos por la hipertrofia de células
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y cdmaras. Inicialmente la respuesta hipertréfi-
ca es un importante mecanismo adaptador que
resulta en mayor nimero de elementos contrac-
tiles, menor estrés de la pared (aumento del gro-
sor de la pared en la hipertrofia concéntrica), y
mayor volumen-latido (incremento del volumen
diastdlico final en la hipertrofia excéntrica).*>
A nivel del miocardiocito, el proceso hipertréfi-
co estd caracterizado por cambios en la expre-
sién gendmica, molecular, celular e intersticial
después de una lesion cardiaca, que se manifies-
tan en la clinica como cambios en el tamailo,
forma y funcién del corazén, colectivamente 1la-
mados remodelacién.®’ La remodelacién y la
disfuncién contrictil son los dos procesos fisio-
patolégicos mas importantes del corazén insu-
ficiente y tienen una intima relacién. Si al inicio
estd presente disfuncién contractil miocédrdica o
de miocitos, se activan numerosas vias de sefia-
les que al final llevan a remodelacién. En con-
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traparte, si al principio existe remodelacion sin
disfuncién contractil, como se ha demostrado
en algunos modelos de animales,® luego viene
la disfuncién contrictil. Cualquier tipo de tera-
pia que interrumpa este ciclo de retroalimenta-
cion positiva atenda o revierte la progresién de
la remodelacién y disfuncién miocardica.’

Son muchas las vias de sefales que inducen a
hipertrofia de miocardiocitos e hipertrofia de las
cdmaras miocardicas'® (Fig. 1). La mayoria
(o todas) de estas vias de sefiales producen hi-
pertrofia patoldgica, esto es, hipertrofia acom-
pafiada por disfuncién contrictil y mal pronds-
tico clinico. Atdn no se comprende el papel de
las moléculas sensoras biomecanicas en la IC.
La transduccion del estrés mecénico hacia sefia-
les bioquimicas estd mediado, cuando menos en
parte, por un grupo de receptores celulares Ila-
mados integrinas,'! que unen a la matriz extra-
celular con el citoesqueleto celular y proporcio-
nan integracion fisica entre el exterior y el inte-
rior celular. Proteinas que son candidatos
adicionales para actuar como sensores biomeca-
nicos incluyen la proteina-B1 de unién a inte-
grinas melusina,'? el componente MLP (protei-
na de dominio-LIM muscular) de la linea zeta, y
el complejo distrofina-distroglicano.!! En la
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década pasada se reconoci6 la importancia de
los defectos heredados en los genes, en la pato-
génesis de las miocardiopatias primarias. Ahora
se sabe que existen mutaciones en al menos 18
genes como causa de miocardiopatia hipertr6fi-
ca o dilatada.'?

Evidencia reciente sugiere que el crecimiento
cardiaco normal y el inducido por ejercicio son
regulados en gran parte por factores de creci-
miento péptidos IGF-1 y hormona del crecimien-
to, mediante sefiales por la via P13K/Akt.!415
Esta via, con sus dos ramas, las vias mTOR y
GSK-3, es en los mamiferos un determinante
dominante del tamafio de miocardiocitos y co-
razén. En contraste, el crecimiento cardiaco pa-
tolégico es consecuencia de factores neurohor-
monales autocrinos y paracrinos liberados du-
rante el estrés biomecanico que se traduce en
seflales a través de la via Gq/fosfolipasa C, lo
que lleva a incremento del calcio citosélico con
activacién de calcineurina y proteincinasas C.'°
En el caso de las proteincinasas C, participan
multiples isoformas activadas y reguladas en
formas diferentes, dirigidas a locales subcelula-
res caracteristicos, que proporcionan perfiles
funcionales especificos pero con superposicion
parcial.
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El(los) mecanismo(s) preciso responsables de la
transicion entre hipertrofia adaptadora e IC mal
adaptada han sido elusivos, pero hay varios can-
didatos:!0 (1) Deficiencias en los almacenes de
fosfatos de alta energia y defectos en la estimu-
lacién-contracciéon (EC); (2) Formacion excesi-
va de microtibulos en los miocitos que altera el
acortamiento sarcomérico;!’” (3) Induccién de
programas de genes fetales en las proteinas con-
tractiles al punto donde la funcién contréctil
estd muy alterada;'8-?? (4) Anormalidades en el
manejo de calcio, debidas?® o independientes,?*
de la induccién de genes fetales; (5) Atenua-
cién, y en algunos casos pérdida total, de la trans-
duccién de sefiales f-adrenérgicas, la principal
forma de apoyo de la funcién miocardica dismi-
nuida;> (6) Desorganizacién estructural de las
protefnas del citoesqueleto;?° (7) Fibrosis mio-
cérdica intersticial;?"-?® (8) Apoptosis;>*3° (9)
Desequilibrio 6xido nitrico/redox.3!

Aunque son distintas desde el punto de vista
clinico, la hipertrofia y la IC tienen muchas ca-
racteristicas moleculares en comun. De hecho,
la hipertrofia de los miocardiocitos y la fibrosis
casi son prerrequisitos indispensables de la
IC.3233 Se enfatiza que la composicién molecu-
lar del corazén insuficiente es relativamente
uniforme y en gran medida independiente de la
lesion (enfermedad) inicial. Asi, la elucidacion
de las vias moleculares que llevan a la hipertro-
fia puede considerarse como investigacion de
los pasos iniciales de la IC. Algunos autores con-
sideran que no es la hipertrofia per se lo perjudi-
cial sino el balance de sefiales diferentes.!?34
Sin embargo, aun es verdad que en el humano la
hipertrofia es un precursor esencial de la IC.

Al momento actual, es imposible definir un per-
fil de sefiales caracteristico del corazén insufi-
ciente, y tampoco estd definido si alteraciones
de sefiales individuales son una causa o conse-
cuencia de la IC. Por lo tanto, el efecto de mani-
pular estas vias sobre la progresion de la IC es
incierto.!® Ademads, y quizé todavia mds impor-
tante, se desconoce el perfil de sefiales de los
corazones con IC menos avanzada.'® Es proba-
ble que la progresion de la IC, en especial la
tardia, se deba mas a alteraciones en las vias de
sobrevida, produccién de energia, homeostasis
del calcio y sefiales B-adrenérgicas, que a altera-
ciones en las vias de crecimiento responsables
del desarrollo de hipertrofia.3>-3% Recientemen-
te, Tardiff3° ha sugerido que en la transicién
entre hipertrofia cardiaca fisiolégica y patol6-
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gica, es la naturaleza del estimulo incitador, no
su cronicidad, lo que establece la respuesta pa-
tolégica inicial y que una disrupcidn caracteris-
tica del sistema f-adrenérgico tiene una partici-
pacién central en las alteraciones tempranas de
la fisiologia miocelular.

Composicion molecular (fenotipo) del
corazon insuficiente

Expresion alterada de proteinas contractiles
Existe evidencia considerable de cambios trans-
cripcionales en las proteinas contractiles sarco-
méricas del corazén insuficiente.?’-?? La infor-
macién incluye cambios en la expresion de ge-
nes y protefnas de las isoformas de la cadena
pesada de miosina y alteraciones en la expre-
sién de troponina T*° y en la expresién de iso-
formas de cadenas ligeras de miosina-1.*! En
cada caso, la expresion alterada de genes y pro-
tefnas representa la induccién a un patrén “fe-
tal” de expresion de genes, mediante la cual cier-
tas proteinas contrictiles, de manejo de calcio y
contrarregulatorias, revierten al patrén de ex-
presiéon de RNAm y proteinas que caracteriza al
estadio de desarrollo fetal.'®2? En el caso de los
patrones de expresion fetal de los filamentos
grueso y delgado de las proteinas contrictiles,
algunas de las alteraciones (cadena pesada de
miosina, troponina T) reducen, y cuando menos
una (cadena ligera de miosina-1) aumenta, la
actividad de la ATPasa miofibrilar y/o de la fun-
cién contrictil. El efecto neto parece ser una
reduccién en la actividad de la ATPasa miofi-
brilar*? y en la velocidad de la contraccién, qui-
z4 porque los cambios dominantes son en las
isoformas de la cadena pesada de miosina. Aun-
que en modelos de animales esta reduccién en
la velocidad de acortamiento fue al inicio inter-
pretada como un cambio adaptador energética-
mente favorable,* el resultado final es un incre-
mento en el estrés de la pared y la activacién de
neurohormonas/citocinas mal adaptada secun-
daria a reduccién del volumen latido e incre-
mento en el volumen ventricular. Asi, la activa-
cion de las vias de sefiales hipertréficas perjudi-
ciales pudiera ser el principal resultado de la
reversion a la expresién de genes fetales.!” La
importancia de la expresion certera de las pro-
tefnas contrictiles, y su alineacion exacta en las
sarcomeras, estd enfatizada por el hecho de que
las mutaciones en las proteinas sarcoméricas
causan miocardiopatia (en su mayor parte hiper-
tréfica, algunas veces dilatada).!3
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La existencia de vias de sefiales redundantes que
pueden llevar a IC es un reto para la interven-
cién terapéutica. Puesto que la remodelacion
cardfaca se asocia con la activacién de un pro-
grama de genes “fetales” patoldgicos que debi-
lita la funcién cardiaca, una conducta terapéuti-
ca atractiva y potencialmente poderosa podria
ser a nivel de la expresién de genes mediante
moléculas pequefias que controlen a vias de
transduccién de sefales dirigidas a factores de
transcripcién y a enzimas asociadas modifica-
doras de la cromatina.**

Anormalidades en el ciclado del calcio
(anormalidades del acoplamiento
excitacion-contraccién)

Existen anormalidades en el acoplamiento ex-
citacion-contraccién (EC) en muchas formas de
IC. La EC requiere del funcionamiento normal
de tres elementos clave, que suelen activarse
como respuesta normal a la lucha o escape al
estrés:*40 (1) la entrada de calcio a través del
canal de calcio dependiente de voltaje en la
membrana plasmadtica (tibulo transverso), (2) la
liberacién de calcio por el receptor ryanodina/
canal liberador de calcio (RyR2) del reticulo
sarcopldsmico (RS), y (3) la captacion de calcio
por la ATPasa de calcio del RS (SERCA?2). Estos
eventos regulatorios tienen el propdsito de au-
mentar la liberacién de calcio del RS en sistole,
con el consiguiente incremento en la contracti-
lidad. Este sistema se altera por el estado hiper-
adrenérgico crénico mal adaptado del corazén
insuficiente, que resulta en canales RyR2 defec-
tuosos debido a hiperfosforilacién por la prote-
incinasa A,*’ que lleva a fuga de calcio del RS
en diastole. Esto, ademds de la captacién redu-
cida de calcio mediada por la SERCA2 en RS
(debido en parte al fosfolambén hiperfosforila-
do por la proteincinasa A, que inhibe a la
SERCAZ2) conspiran para depletar el calcio de
RS y contribuyen a la disfuncién contréctil del
musculo cardiaco. La hiperfosoforilacién de la
proteincinasa A hace que los canales RyR2 de
los corazones insuficientes tengan fugas, al de-
pletar a estos complejos macromoleculares de la
proteina estabilizadora, la proteina de unién
FK506 (FKBP12.6, también llamada calstabin2).
Uno de los papeles de la FKBP12.6 es estabili-
zar (mantener) al RyR2 en el estado cerrado du-
rante la didstole para asegurarlo en contra de
una fuga aberrante de calcio del RS, que pudiera
desencadenar arritmias cardiacas.*84
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De acuerdo al estudio de Guo y cols,’® la protein-
cinasa II dependiente de Ca2+/Calmodulina (Ca-
MEKII) parece ser la cinasa dominante que fosfori-
la al RyR2 para incrementar la fuga del calcio del
RS en ratones. Resultados similares se han obte-
nido en modelos de IC en conejos.’! Permanece
por demostrarse si los efectos de CaMKII estan
presentes y son relevantes en el humano con IC, y
no estd definida la importancia relativa del CaM-
KII versus la proteincinasa A en la induccién de
la fuga de calcio del RS del corazén humano in-
suficiente.”” Esto es particularmente verdad a la
luz de hallazgos recientes que cuestionan la im-
portancia funcional de la fosforilacién dependien-
te de la proteincinasa A de los RyR2 en la IC.33-5¢
Estudios futuros deberan clarificar esta duda. Sin
embargo, participen o no, la proteincinasa A o
CaMKII, o ambas, es cada vez mas evidente que
la fuga de calcio via los RyR2 (hiperfosforilados)
es un problema serio en el corazén insuficiente.
Esto, en conjunto con la bien documentada re-
duccidn de la captacién de calcio, via la expre-
si6n y actividad reducida de la SERCA, puede
llevar a menor contractilidad y mayor propen-
sion a arritmias durante la IC (Fig. 2).

De este modo, el curso clinico de la IC representa
una activacion mal adaptada de la clésica respues-
ta al estrés “pelea o huye”, en un intento futil por
aumentar el gasto cardiaco. Como ya se mencio-
nd, algunos autores han criticado este modelo,>3-%
pero Yano y cols’”3 han sugerido que la inhibi-
cién de la fuga diastdlica de calcio del RS median-
te la estabilizacion de la unién de FKBP12.6 al
RyR2 con el derivado 1,4-benzotiazepina, JTV519,
puede mejorar significativamente la hemodinamia
cardfaca en un modelo canino de IC. Esto, y las
precisiones de Marks* respecto a la metodologia
de algunos de los informes criticos, proporcionan
apoyo importante para el modelo que incluye un
importante rol para la fuga de calcio diastdlica por
los RyR2. Empero, en contraste con muchas situa-
ciones experimentales, en las que los tratamientos
se administran antes del desarrollo de la IC, en el
humano debe curarse después de que ya existe, y
hasta ahora existe poca informacién sugestiva de
que la manipulacién de las proteinas regulatorias
del calcio sea eficaz, antes o después del desarro-
llo de la IC.8

Vias de transduccion de senales

El corazon insuficiente muestra anormalidades
profundas en los sistemas de transduccién de
sefiales. Me enfoco a las alteraciones en la trans-
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Fig 2.

duccién de sefiales B-adrenérgicas,”™%° ya que
ademads de ser uno de los primeros defectos mo-
leculares propuestos en el corazén insuficien-
te,%! se piensa que ocurren cambios similares en
modelos de animales y humanos.

En el corazén normal, con grandes cantidades
de receptores B-adrenérgicos en la membrana,
las proteinas G estimuladoras (Gsc) activan a la
adeninil-ciclasa. Esto eleva los niveles de ade-
nosin monofosfato ciclico (AMPc), y se induce
a la proteincinasa A. Esta tltima, al ser activada
fosforila al fosfolamban, y asi se libera su fun-
cion inhibitoria sobre la SERCA2 del RS, con el
consiguiente incremento del transporte de cal-
cio del citosol al RS. Como se comenté mds arri-
ba la remocioén de calcio del citosol aumenta la
relajacién, mientras que la adecuada liberacion
de calcio de los almacenes del RS incrementa la
contractilidad. Ambos mecanismos son impor-
tantes para la funcién cardiaca normal. El calcio
es pues la moneda de la contractilidad y relaja-
cién cardfaca. En la IC®? existe regulacién a la
baja de los receptores f-adrenérgicos (principal-
mente del subtipo f3,) y desensibilizacién por
fosforilacién, que altera la capacidad del recep-
tor para activar a la proteina Gso.. En adicion, la
unién de la B-arrestina al receptor resulta en des-
acoplamiento entre receptor f-adrenérgico y
Gso. Existe ademas regulacion a la alza de la
proteina G inhibitoria (Gio) e internalizacion
del receptor. Estos dos mecanismos, la inhibi-
cién de la via B-adrenérgica—proteincinasa A y

Insuficiencia cardiaca
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la alteracion del ciclado del calcio, reducen la
contractilidad y la relajacién. En breve, la trans-
duccion alterada de sefiales en la IC lleva a dis-
turbios del metabolismo de calcio miocelular,
los cuales pudieran mejorarse con estrategias te-
rapéuticas que restauren el manejo normal del
calcio, como la manipulacién de la actividad de
la SERCA?2 o del fosfolamban,®3:%4 o con la esta-
bilizacién de la unién FKBP12.6 al RyR2%7 (ver
arriba).

Anormalidades del metabolismo
energético

El corazén es un érgano aerébico que requiere
de considerable energia para procesos como la
contraccién y relajaciéon miofibrilares, la capta-
cién de calcio hacia el RS en contra de un gra-
diente de concentracion, y la restauracion de las
concentraciones de iones entre los espacios ex-
tra e intracelular en didstole.% En la IC por dis-
funcién sistélica el “trabajo externo” realizado
por el ventriculo izquierdo esta deprimido, mien-
tras que el consumo de energia estd normal o
casi normal. Asf, el corazén insuficiente y dila-
tado es ineficiente con su energia. Existe la tesis
de que la insuficiencia miocardica pudiera tener
relacién con una incapacidad de la fosforilacion
oxidativa para mantener los requerimientos del
aparato contractil. Katz% ha propuesto que las
anormalidades mitocondriales observadas en el
coraz6n insuficiente pudieran ser resultado del
dafio a estas estructuras, y que dichas anormali-
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dades reducen la disponibilidad de fosfatos de
alta energia para la contraccion, lo que contri-
buye al desarrollo de IC.

En modelos experimentales y en el humano con
miocardiopatia en fase terminal se han observa-
do alteraciones en el metabolismo energético car-
diaco consistentes en disminucién del adenosin
trifosfato (ATP), del almacén total de nucle6ti-
dos de la adenina, de la actividad de la creatinci-
nasa (requerida para la sintesis del ATP), de las
concentraciones de fosfato de creatina, y de la
relacion fosfato de creatina/ATP.57-%8 La relacion
ATP/Adenosin monofosfato (AMP) y la relacion
ATP/Adenosin difosfato no cambiaron, y el al-
macén total de adenina disminuy6.%” Tanto la
sintesis como la utilizacién de ATP se redujeron,
y puesto que esta ultima excedi6 a la primera, la
concentracién de ATP fue menor. Estas observa-
ciones han llevado a la hipétesis de que la insufi-
ciencia miocardica pudiera deberse a una dismi-
nucién en la reserva de energia, o cuando menos
que esto contribuyera al desarrollo de IC.

Anormalidades del citoesqueleto

El citoesqueleto de los miocardiocitos es capaz
de influenciar la funcién miocardica dindmica-
mente, en particular durante la sobrecarga de
presién. En adicién, la concentracién de dife-
rentes proteinas citoesqueléticas como la des-
mina, tubulina, vinculina, distrofina, talina, y
espectrina, parece estar aumentada en los cora-
zones humanos con insuficiencia en fase termi-
nal.%®® En contraste, las proteinas esqueléticas
sarcoméricas O-actinina, titina, y miomesina,
pudieran estar disminuidas en los corazones
humanos con insuficiencia en fase terminal.®
Estos cambios pudieran interferir con la funcién
normal de los miocitos y causar o contribuir a la
remodelacién de células y camaras.

Un niimero cada vez mayor de mutaciones en
los genes citoesqueléticos han demostrado ser
la base de fenotipos de miocardiopatia dilata-
da.”®7! La lista en humanos incluye la distrofi-
na,’® desmina,’>”3 sarcoglicanos,’* y proteinas
del sobre nuclear lamina A y C.7>7° Es probable
que las mutaciones de varios genes que codifi-
can las proteinas citoesqueléticas pudiera tener
un rol también en el desarrollo de miocardiopa-
tias dilatadas (secundarias) adquiridas.!?

Matriz extracelular
Al regular la naturaleza y cantidad de la matriz
extracelular, las células no miociticas cardiacas
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tienen un importante rol para determinar la res-
puesta del miocardio a estimulos patoldgicos,
como la sobrecarga hemodindmica.”’-”® Los co-
razones hipertréficos e insuficientes suelen te-
ner fibrosis intersticial considerable, que endu-
rece al ventriculo e impide la contraccién y la
relajacion. La aldosterona es un estimulo mayor
del depésito de coldgena en el corazdn, y de
hecho es producida en el mismo corazén, en
adicién a su mayor secrecion por las suprarrena-
les en la IC.

Apoptosis

En contraste con la necrosis, la muerte celular
programada o apoptosis es un proceso depen-
diente de energia mediante el cual un programa
genético especifico lleva a la activacién de una
cascada de moléculas que causa la degradacion
del DNA nuclear.580-82 L og efectores mds im-
portantes de la muerte celular en la apoptosis
son una familia de proteasas de cisteina llama-
das caspasas. Se ha propuesto que un incremen-
to en la apoptosis con pérdida de miocitos con-
tribuye a la disfuncién VI progresiva en la IC
crénica.?? Aunque se desconoce el rol de la apop-
tosis en la transicion a la IC, es probable que sea
una causa importante de muerte celular en el
corazén insuficiente.3* La apoptosis pudiera ser
un importante mecanismo regulatorio en la res-
puesta adaptadora a la sobrecarga de presién.’>
De acuerdo con Nadal-Girard y cols,’ la oclu-
sién de una arteria coronaria mayor lleva prime-
ro a muerte miocitica apoptoica, y luego, a ne-
crosis celular. Existe poca informacién respecto
a las vias que modulan la muerte celular apop-
toica en el corazon infartado. En contraste, p53
y genes regulados y dependientes de p53 tienen
un rol critico en la adaptacién aguda de la por-
cién no isquémica del corazén. En breve, la dis-
tensién diastdlica del miocardio sobreviviente
resulta en liberacion de angiotensina Il y regu-
lacién a la alza del sistema renina-angiotensina
local mediante la activacion de genes regulados
por p53.%7 La expresion de genes dependientes
de p53, y la formacién de angiotensina II con
estimulacion de la via efectora AT, promueven
la ruptura de DNA de doble hélice y de hélice
Unica, apoptosis de miocitos, deslizamiento ce-
lular, adelgazamiento de la pared, y dilatacién
de la cdmara. Estos cambios anatdmicos contri-
buyen a la alteracion funcional progresiva del
corazén isquémico.

La prevencion o inhibicién de la apoptosis de
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Fig 3.

miocardiocitos tiene el potencial de convertirse
en una nueva avenida terapéutica de la IC. Por
ejemplo, los inhibidores de la caspasa®® han
mostrado reducir el tamaio del infarto y dismi-
nuir la disfuncién cardiaca después de la isque-
mia-reperfusion,® y también han tenido benefi-
cios en modelos de miocardiopatia dilatada.”®

Mecanismos moleculares que llevan a
la insuficiencia cardiaca33.636566,80,91,92

La capacidad del corazén para interpretar los cam-
bios en la demanda circulatoria, depende de las
vias de transduccién de sefiales, mismas que le
“notifican” a los miocardiocitos los cambios he-
modindmicos o la perfusién inadecuada a un 6r-
gano vital, y luego provocan una respuesta apro-
piada.%® La capacidad para generar diferentes fe-
notipos de miocitos en respuesta a los diferentes
estimulos mecanicos requiere de estos sistemas
de sefales intracelulares, los cuales con sensibi-
lidad y selectividad, producen la respuesta mole-
cular apropiada. Las cascadas de sefiales intrace-
lulares, activadas por mensajeros extracelulares,
llevan a respuestas mdas distales como la fosfori-
lacién de proteinas por una proteincinasa, y la
unién al DNA por un factor de transcripcion. El
resultado final es un cambio molecular que mo-
difica las propiedades bioquimicas, en especial

MAPKSs “genérica”

MAPKs mitogénica “clasica”

L Eng-Cecefia

la funcién contrictil y la expresion de genes. Es-
tas respuestas son la clave para comprender la
fisiopatologfa y el tratamiento practico de la IC.%
Como ya se comentd, existe progreso significati-
vo en la identificacién de las principales vias de
sefiales de la hipertrofia miocardica, Sin embar-
go, permanece por elucidarse cémo y por qué ocu-
rre la transicién de hipertrofia a IC. Se han identi-
ficado muchas vias que llevan a la hipertrofia
(Fig. 2), pero s6lo se comentan algunas represen-
tativas que han generado atencién reciente. La
mayoria consisten en una serie de cinasas conser-
vadas a través de la evolucién, que tienen pape-
les diferentes en las diversas especies y células.
Por ejemplo, las proteincinasas activadas por mi-
tégeno (MAPKSs), llamadas asi por su funcién
inicialmente descrita, pueden inducir mitosis en
hongos y en muchos tejidos de mamiferos, e hi-
pertrofia en el miocardiocito.%?

Proteincinasas activadas por
mitogenos (MAPKSs) - senales
proliferativas

Estudios recientes han mostrado que diversos
estimulos extracelulares son mediadas a través
de las MAPKSs (Fig. 3), una familia de proteinci-
nasas relacionadas a la evolucién, que forman
cuando menos 3 vias en el corazén:33-%3 (1) pro-

MAPKs activada por estrés
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Fig 4.

teincinasa activada por mitégenos cldsica (tam-
bién conocida como ERK), (2) proteincinasa
activada por estrés/cinasa c-Jun N-terminal
(JNK), y (3) cinasa p38. Estas vias de cinasas
tienen estructuras similares, pero son funcional-
mente distintas, y son algunos de los mensaje-
ros que en realidad difunden del citosol a través
de poros grandes de la membrana nuclear. Una
vez en el nucleo, las MAPKs fosforilan, y asi
activan a factores de transcripcion nucleares que
modifican la expresion de genes. Entre los pro-
cesos modulados por estas vias con respuesta al
estrés se incluyen: apoptosis, trasformacion, de-
sarrollo, activacién inmune, inflamacién, y adap-
tacion a los cambios del medio ambiente.

Via MAPK/ERK1/2: En respuesta a la estimula-
cioén agonista, como la All, endotelina-1, el li-
gando del receptor-a. noradrenalina o la disten-
sién celular, ERK1 y ERK2 son activados por la
siguiente secuencia de protefnas:®3 Ras es esti-
mulado por el intercambio GDP-GTP y activa a
Raf-1, una cinasa serina/treonina [cinasa cinasa
MAPK (MAPKKK)], que a su vez fosforila cina-
sas mas distales (MAPKK), y eventualmente lle-
va a la fosforilacion de ERK1/2 (a MAPK). ERK1/
2 se transloca al nicleo y es responsable de la
activacion de factores de trascripcién por fosfo-
rilacién, mismos que estimulan la transcripcion
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de genes tipicamente regulados a la alza en la
hipertrofia, como el péptido natriurético cere-
bral (BNP).” La cascada Raf-1-MAPKK-ERK
puede también ser inducida por la proteincinasa
C activada por estrés.”*

Vias JNK y p38: Se ha observado que las vias
JNK y p38 participan en la respuesta hipertrofi-
ca, pero se piensa que tienen un rol en la trans-
mision de sefiales de otros estimulos mas proxi-
males. Una via en la que participa la activacion
de integrinas por la distension lleva a activa-
cion de p38, y p38 participa en la respuesta a la
All y al estimulo o-adrenérgico.” El hallazgo
de que isoformas especificas de p38 median fun-
ciones fisioldgicas distintas en los miocardioci-
tos, sugiere que inhibidores especificos de p38
encaminados a reducir la apoptosis pudieran ser
un mecanismo eficaz para prevenir la IC.33

Moléculas de senales dependientes
del calcio

La calcineurina y la cinasa dependiente de cal-
cio-calmodulina (CaMK), son moléculas de se-
fiales dependientes del calcio que pueden provo-
car una respuesta hipertréfica. La calcineurina, es
una fosfatasa dependiente de calcio-calmoduli-
na que defosforila a factores de trascripcion NF-
AT (factor nuclear de células T activadas). Esto
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resulta en translocacién de NF-ATs al nicleo
donde promueve la activacién de distintos ge-
nes.” Otros objetivos de la calcineurina son las
mitocondrias (potencial de membrana mitocon-
drial) y el receptor RyR2 del RS. Diferentes
estimulos pueden activar a la calcineurina. En-
tre los agonistas se incluyen la angiotensina,
endotelina y el estimulo-o de la noradrenalina.
La activacién por distension y los niveles ele-
vados de calcio, junto con la calmodulina, Ile-
van también a un incremento en la actividad de
la calcineurina. Varios estudios recientes in vivo
han confirmado el rol de esta via en la hipertro-
fia miocdrdica, pero no esté claro qué tanto par-
ticipa en el desarrollo de IC, ni la naturaleza de
su interaccién con otras vias de sefiales.?3 La via
Calcineurina—NF-AT esta sujeta a varios meca-
nismos regulatorios, inclusive inhibidores en-
dégenos” y protedlisis caracteristica.* Es po-
sible la inhibicién de la calcineurina con farma-
cos o inhibidores endégenos.’® Quizd la
identificacién futura de formas de calcineurina
con mayor especificidad cardiaca y la aparicion
subsiguiente de inhibidores mas especificos pu-

L Eng-Cecefia

dieran llevar a una estrategia valiosa para preve-
nir la IC.3

Conclusiones

Existen importantes avances en la compren-
sién de los complejos e interrelacionados me-
canismos moleculares de la IC (Fig. 4). A pe-
sar de la identificacién de nuevas vias de se-
flales, permanece elusiva una hipdtesis
unificadora que explique todas las formas de
IC. Tampoco esta definido si alteraciones de
sefiales individuales son causa o consecuen-
cia de la IC. Aunque la investigacion recien-
te ha identificado objetivos moleculares po-
tenciales para intervenciones farmacologi-
cas, es improbable que todas estas conductas
resulten en terapias seguras y efectivas de la
IC, pero eventualmente algunas serdn parte
del nuevo arsenal para detener o revertir su
deterioro progresivo. En adicién, el futuro
no lejano contempla avances fascinantes, que
incluyen la terapia genética’! y el uso de te-
rapia celular para reconstituir el miocardio
muerto.”-102
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