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Artículo original

RESUMEN

Objetivo: las actividades aspartato aminopeptidasa
(AspAP) y glutamato aminopeptidasa (GluAP),
denominadas conjuntamente actividad aminopeptidasa
A (APA), ejercen actividad angiotensinasa debido a su
relación con el metabolismo de las angiotensinas en el
sistema renina-angiotensina cerebral (SRAc). Puesto
que el alcohol es una droga de abuso que altera dife-
rentes e importantes sistemas neurotransmisores/
neuromoduladores, induciendo una amplia variedad de
daños neurológicos, el propósito del presente trabajo
es analizar la influencia de la ingesta crónica de etanol
(15%; 30 días) sobre la actividad APA. Material y métodos:
la APA se midió en sinaptosomas de corteza frontal de
ratón, utilizando aspartato- y glutamato-ß-naftilamida
como sustratos, en condiciones basales y despola-
rizantes (K+ 25 mM), en presencia y ausencia de calcio
en el medio de incubación. Resultados: mientras que

el etanol disminuye la actividad APA en condiciones
despolarizantes en presencia de calcio y en ausen-
cia de calcio en condiciones basales, la despolarización
incrementa los niveles de la actividad APA. Conclusiones:
los resultados ponen de manifiesto la existencia de
cambios en la actividad angiotensinasa de la corteza
frontal de ratones tras la administración de etanol. Estos
cambios estarían relacionados con modificaciones en
el metabolismo de la angiotensinas del SRAc, por lo
que se podría afirmar que el etanol potencia los efectos
en la regulación del flujo sanguíneo local o el balance
de fluidos y electrolitos.

Palabras clave: corteza frontal, etanol, sinaptosomas,
sistema renina-angiotensina.

MODIFICATIONS ON ANGIOTENSINASE
ACTIVITY IN MOUSE FRONTAL CORTEX

SYNAPTOSOMES BY CHRONIC ETHANOL
INTAKE: INFLUENCE ON REGIONAL BRAIN

RENIN-ANGIOTENSIN SYSTEM

ABSTRACT

Objetive: aspartyl aminopeptidase (AspAP) and
glutamyl aminopeptidase (GluAP), named together as
aminopeptidase A (APA), exert angiotensinase activity
due to its interaction to the metabolism of angiotensins
in the regional brain renin-angiotensin system (bRAS).
Due to ethanol (EtOH) is a drug of abuse that alters
several important neurotransmitter/neuromodulatory
systems, inducing a variety of neurological damages,
the aim of this work is to study the APA activity Under
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chronic ethanol intake (15%; 30 days). Material y
methods:  the APA activity was determined in
synaptosomes obtained from the frontal cortex of Mouse
using aspartate- and glutamate-naphthylamide as
substrates, on basal and K+-stimulated conditions, in a
Ca2+-containing or Ca2+-free artificial cerebrospinal fluid
(aCSF). Results: EtOH inhibits APA activity in K+-
stimulated conditions in a Ca2+-containing or Ca2+-free
aCSF on basal conditions. Depolarization increases
levels of APA activity. Conclusions: the results show
changes on angiotensinase activity on frontal cortex
synaptosomes under chronic EtOH intake. These
changes would be related to modifications on the
metabolism of bRAS and it could be afirmed that EtOH
enhances the effects on cerebral fluids and electrolites
homeostasis.

Key words: frontal cortex, ethanol, synaptosomes,
renin-angiotensin system.

os enzimas proteolíticos reguladores (EPR)
cerebrales están implicados en la activación y
degradación enzimática de diferentes pépti-

dos biológicamente activos1. Las actividades aspartato
aminopeptidasa (AspAP) y glutamato aminopeptidasa
(GluAP), denominadas conjuntamente como actividad
aminopeptidasa A (APA)1,2, ejercen actividad angioten-
sinasa debido a su relación con el metabolismo de la
angiotensina II (Ang II) en el sistema renina-angio-
tensina cerebral (SRAc)3-6. Clásicamente la Ang II se ha
considerado como el principal péptido efector del
SRA, pero no es el único péptido activo de este sis-
tema. Cada vez son más numerosos los datos que
apoyan esta idea de que la Ang II no es el único
péptido activo del SRA y que los fragmentos obteni-
dos de su degradación tienen importantes funciones
biológicas7, entre las que destaca la Ang III obtenida
por acción de las angiotensinasas sobre la Ang II7,8. La
APA convierte la Ang II en Ang III4,8-10, ya que elimina el
residuo aspartilo N-terminal de la Ang II, regulando a
nivel central la presión sanguínea sistémica y la
homeóstasis de fluidos y electrolitos11,12. Esta función
de la Ang II y Ang III es en particular importante en el
cerebro debido a que el sistema nervioso es muy sen-
sible a los cambios de la presión sanguínea8-10,13. La
APA no sólo tiene función neuromoduladora, sino que
también modifica el conjunto de aminoácidos libres a
través de la liberación de residuos glutamilos y
aspartilos N-terminales, los cuales son activos en el
sistema nervioso central (SNC)2,14-16. Por tanto, cambios
en la actividades AspAP y/o GluAP pueden contribuir
o reflejar modificaciones en la regulación del SRA y/o

el recambio de aminoácidos excitatorios.
El etanol (EtOH) es una droga de abuso que

altera diferentes e importantes sistemas neurotrans-
misores/neuromoduladores, tanto en condiciones
agudas como crónicas, induciendo una amplia varie-
dad de daños neurológicos17,18. La acción de estos
sistemas neurotransmisores/neuromoduladores todavía
no está clara. El propósito del presente trabajo es ana-
lizar la influencia del EtOH sobre las actividades AspAP
y GluAP, en sinaptosomas de corteza frontal de ratón,
en condiciones basales y despolarizantes y en presen-
cia o ausencia de calcio en el medio, para estudiar la
posible contribución de estas actividades enzimáticas
en la regulación de la presión sanguínea a través del
SRA.

MATERIAL Y MÉTODOS

Animales

En los experimentos realizados en este estudio
se han utilizado 78 ratones macho de la variedad Balb/
C, con un peso medio de 28.9±6.1 g. Los animales
fueron proporcionados por el Estabulario de los Ser-
vicios Técnicos de la Universidad de Jaén y estuvieron
acondicionados con un fotoperiodo día/noche de 12
hs, bajo condiciones constantes de temperatura (20 a
25ºC). Se dividieron de forma aleatoria en dos grupos.
Un grupo recibió una solución de EtOH al 15% duran-
te 30 días y el otro grupo fue considerado como
control. Los animales dispusieron de comida y bebi-
da ad libitum. Los protocolos se llevaron a cabo de
acuerdo con la normativa 86/609/CEE de la Comuni-
dad Europea.

Obtención de la fracción de sinaptosomas

La fracción de sinaptosomas utilizada en los di-
ferentes experimentos realizados en el presente estudio
se ha obtenido siguiendo protocolos previamente des-
critos19. Brevemente, tras la muerte del animal por
decapitación, se extrae el cerebro y se secciona la
parte correspondiente a la corteza cerebral. El tejido
obtenido, que se mantiene a 4ºC durante todo el pro-
ceso, se homogeneiza en sacarosa 0.32 M, utilizando
un homogeneizador de émbolo de teflón. El
homogeneizado obtenido se centrifuga a 2.000 g y se
recoge el sobrenadante. Este se centrifuga a 30.000 g.
Se elimina el sobrenadante y el precipitado se
resuspende en sacarosa 0.32 M. Este volumen se aña-
de sobre un gradiente de densidad previamente
preparado y se centrifuga a 30.000 g. Tras centrifugar,
se elimina el sobrenadante y se recoge el precipitado
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que aparece en el centro del gradiente de densidad.
El precipitado obtenido, correspondiente a la fracción
sinaptosomal, se resuspende en medio de incuba-
ción con calcio o libre de calcio (EGTA 2 mM), ajus-
tando el volumen para obtener una concentración final
de proteína en la muestra de 0.5 mg/ml. Después, los
sinaptosomas se incuban en condiciones basales o tras
despolarización con KCl 25 mM en un baño a 37°C
durante 15 minutos. Después de este tiempo, se
centrifugan a 30.000 g y se resuspenden en el medio
de incubación correspondiente para los distintos en-
sayos. La fracción de sinaptosomas obtenida se
verificó mediante técnicas habituales de microscopía
electrónica.

Determinación de la actividad específica aminopeptidasa
A

Las actividades específicas AspAP y GluAP
(APA) se determinaron usando como sustratos aspar-
tilo glutamil- ß-naftilamidas (AspNNap o GluNNap),
como se ha descrito previamente6,20. Así, se incubaron
20 µl de la fracción sinaptosomal con 50 µl de la so-
lución de sustrato conteniendo AspNNap o GluNNap
100 µM durante 30 minutos a 37°C. Las reacciones
enzimáticas se finalizaron mediante la adición de 50 µl
de tampón acetato 0.1 M pH 4.2 que contenía sal Fast
Garnet GBC al 2%. La cantidad de ß-naftilamina libe-
rada como resultado de la actividad enzimática  se
acopla a la sal GBC, dando un compuesto coloreado
que puede determinarse fotométricamente a 550 nm
de longitud de onda. La actividad específica APA se
expresa en nanomoles de AspNNap o GluNNap
hidrolizados por minuto y por miligramo de proteína,
tras usar una curva de ß-naftilamina determinada en las
mismas condiciones.

Determinación de proteínas totales

Las proteínas fueron analizadas mediante el
método de Bradford16, usando una curva estándar de
albúmina sérica bovina (BSA).

Análisis estadístico

Para analizar las diferencias entre grupos, se ha
usado el análisis de la varianza de una vía (ANOVA),
seguida del test de rango múltiple de Newman-Keul’s.
Todas las comparaciones con P<0.05 se han conside-
rado estadísticamente significativas.

RESULTADOS

El análisis de la ingesta crónica de EtOH sobre
la actividad específica de AspAP de sinaptosomas de
corteza cerebral de ratón en condiciones basales y en

presencia de calcio en el medio de incubación no
muestra modificaciones significativas. Sin embargo,
tras la despolarización se observa un incremento sig-
nificativo (P<0.01) del 17.41% en situaciones control,
mientras que en situaciones de ingesta de EtOH la
despolarización tampoco produce modificaciones sig-
nificativas. En condiciones despolarizantes, la ingesta
crónica de EtOH produce un descenso significativo
(P<0.01) de la actividad específica de AspAP en un
16.86%. Por otro lado, en ausencia de calcio en el
medio de incubación el EtOH provoca una disminu-
ción significativa (p<0.01) de la actividad específica de
AspAP del 42.05%. Sin embargo, la despolarización
produce un incremento significativo (P<0.01) del
63.62% en situaciones control. De la misma forma en
situaciones de ingesta crónica de EtOH la despola-
rización provoca un incremento del 180.76% (P<0.01).
En condiciones despolarizantes la ingesta crónica de
etanol no produce modificaciones significativas de la
actividad específica de AspAP (figura 1).

El análisis de la ingesta crónica de EtOH sobre
la actividad específica de GluAP de sinaptosomas de
corteza cerebral de ratón en condiciones basales y en
presencia de calcio en el medio de incubación no
muestra modificaciones significativas. Sin embargo,
tras la despolarización se observa un incremento sig-
nificativo (P<0.01) del 20.24% en situaciones control.
Mientras que en situaciones de ingesta de etanol, la
despolarización tampoco produce modificaciones sig-
nificativas. En condiciones despolarizantes, la ingesta
crónica de EtOH produce un descenso significativo
(P<0.05) de la actividad específica de GluAP en un
11.46%. Por otro lado, en ausencia de calcio en el

Figura 1. Efecto de la ingesta crónica de etanol (EtOH) sobre la
actividad específica aspartato aminopeptidasa (AspAP) de
sinaptosomas de corteza frontal de ratón en condiciones basales y
despolarizantes (K+ 25 mM) y en presencia o ausencia de calcio en el
medio de incubación. Los resultados se expresan en nanomoles de
aspartil-ß-naftilamida hidrolizados por minuto y por miligramos
de proteína (media ± SEM; n=11; **P<0.01).
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medio de incubación el EtOH provoca una disminu-
ción significativa (p<0.01) de la actividad específica de
GluAP del 27.04%, mientras que la despolarización
produce un incremento significativo (P<0.01) del
55.48% en situaciones control. De la misma forma en
situaciones de ingesta crónica de EtOH la despola-
rización provoca un incremento del 113.74% (P<0.01).
En condiciones despolarizantes la ingesta crónica de
etanol no produce modificaciones significativas de la
actividad específica de GluAP (figura 2).

bios en ciertos receptores de neurotransmisores tales
como los NMDA24, los GABAA

25 y los canales iónicos
dependientes de voltaje26,27. Pero el etanol también
induce la liberación de neurotransmisores en sinap-
tosomas no estimulados independientemente de la
concentración extrasinap-tosomal de calcio, indicando
una redistribución de calcio intracelular28, la cual pue-
de estar relacionada con los efectos moduladores del
etanol sobre la actividad AspAP y GluAP.

En segundo lugar, se observa que la estimu-
lación con K+ 25 mM en presencia de calcio induce
un incremento de la actividad AspAP y GluAP. Este in-
cremento  puede deberse, quizá a un proceso de
liberación de los enzimas desde los sinaptosomas al
medio de incubación, como previamente habíamos
descrito para otras actividades de EPR29. Esto podría
indicar que los péptidos activos y los enzimas encar-
gados de su degradación pueden liberarse juntos a la
hendidura sináptica para regular la función
neurotransmisora/neuromoduladora de estos péptidos.
En ausencia de calcio, la actividad AspAP sinap-
tosomal aumenta de forma notable, mientras que la
actividad GluAP se incrementa levemente. Estos cam-
bios pueden ser debidos a la imposibilidad de la
AspAP de ser liberada bajo condiciones despolari-
zantes en un medio libre de calcio, por un mecanismo
que no afecta a la GluAP, como puede ser la redistri-
bución intracelular de calcio.

Una tercera observación es que tras la adminis-
tración de alcohol, tanto la actividad AspAP como
GluAP sinaptosomal se inhiben en presencia de calcio,
pero no se modifican en ausencia de calcio. A nivel del
sobrenadante, tanto la actividad AspAP como la GluAP
se inhiben en un medio con calcio, si bien en ausen-
cia de calcio la actividad AspAP se inhibe mientras que
la actividad GluAP no se modifica. Se ha demostrado
que la adición in vitro de etanol a sinaptosomas de rata
o ratón inhibe la recaptación de calcio en condiciones
despolarizantes sin afectar la recaptación bajo condi-
ciones no despolarizantes. Estos resultados sugieren
que los conocidos efectos inhibidores del etanol en la
liberación evocada de neurotransmisores pueda ser
mediada por la inhibición del flujo de calcio depen-
diente de la despolarización30. Quizás, el bloqueo de
los canales de calcio dependientes de voltaje en
sinaptosomas puede ser responsable de los efectos
del etanol sobre las actividades AspAP y GluAP. De
hecho, resultados previos de nuestro laboratorio, han
sugerido que los canales de calcio dependientes de
voltaje tipo N están implicados en la liberación estimu-
lada por potasio de EPR31.

En último lugar, los presentes resultados eviden-

DISCUSIÓN

Varias observaciones se han obtenido de este
trabajo. Primera, la capacidad del etanol para modifi-
car de diferente forma las actividades específicas de
AspAP y GluAP a nivel de la sinapsis. Tras la adminis-
tración de alcohol, las actividades AspAP y GluAP
sinaptosomales a nivel basal no se modifican en pre-
sencia de calcio en el medio, pero ambas se inhiben
en ausencia de calcio. Los cambios observados en la
actividad AspAP y GluAP pueden deberse a un efec-
to directo del etanol y/o sus metabolitos sobre estos
enzimas o también puede ser la consecuencia de los
efectos del etanol en los constituyentes de las mem-
branas sinaptosomales, ya que se ha descrito
ampliamente que el etanol aumenta la fluidez de las
membranas y cambia su composición lipídica alterando
una gran variedad de funciones de las membranas21,22.
Además, estudios más recientes han sugerido que la
hipótesis primera de que el etanol actúa de una forma
no selectiva alterando la microfluidez de las membranas
biológicas puede ser verdad sólo con concentracio-
nes superiores a aquellas farmacológicamente
activas23. Quizá, los efectos del etanol se deban a cam-

Figura 2. Efecto de la ingesta crónica de etanol (EtOH) sobre la
actividad específica glutamato aminopeptidasa (GluAP) de
sinaptosomas de corteza frontal de ratón en condiciones basales y
despolarizantes (K+ 25 mM) y en presencia o ausencia de calcio en el
medio de incubación. Los resultados se expresan en nanomoles de
glutamil-ß-naftilamida hidrolizados por minuto y por miligramos
de proteína (media ± SEM; n=11; *P<0.05; **P<0.01).
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cian cambios importantes en las actividades AspAP y
GluAP como consecuencia de la administración de
etanol. El SRA, en el que estas dos actividades par-
ticipan, esta implicado en la patogénesis de la
hipertensión. Sus principales péptidos bioactivos,
la Ang II y III, participan en el incremento de la presión
sanguínea de varios modos como son la vasocons-
tricción directa, la activación del sistema nervioso
simpático32, la inhibición sináptica del reflejo barore-
ceptor a nivel del núcleo del tracto solitario y la
liberación de la hormona hipofisaria vasopresina33,34,
induciendo un incremento en el apetito de la sal y de
la ingesta de bebida35,36. La estimulación de la libera-
ción de vasopresina por Ang II y III es quizás uno de
los mecanismos por los que estos péptidos regulan la
homeóstasis de líquidos y electrolitos bajo condicio-
nes de hipovolemia, mediante la reducción de la
pérdida renal de agua e incrementando la presión san-
guínea37. El cerebro es en especial sensible a la
hipertensión, la cual causa una gran variedad de cam-
bios celulares y vasculares.

Tomados en conjunto, nuestros resultados
muestran en general un efecto inhibidor del etanol so-
bre las actividades AspAP y GluAP bajo condiciones
basales y estimuladas, pudiendo indicar la existencia
de altos niveles de Ang II y niveles menores de Ang III,
provocando, por tanto, a priori un incremento en la
presión sanguínea. No obstante, las funciones de
la Ang II y Ang III en el control de la presión sanguínea
no están claras. La inhibición de la formación de Ang
III endógena en el cerebro por la inyección central del
inhibidor de la APA denominado EC33 induce un gran
descenso de la presión sanguínea de forma dosis-de-
pendiente. También, el bloqueo de la APA por la
administración intracerebroventricular de antisuero
inhibe la actividad de este enzima y disminuye el incre-
mento de la presión sanguínea inducido por la Ang II
en un 59%38. Por tanto, parece ser la Ang III cere-
bral endógena, pero no la Ang II, como ocurre a nivel
periférico, la que ejerce su efecto estimulador en el con-
trol de la presión sanguínea10. Además, la infusión
central de APA induce un incremento significativo en la
presión sanguínea debido al mayor nivel de produc-
ción de Ang III cerebral. Estos estudios muestran
evidencias claras de que la Ang III, producida por la
acción de APA sobre la Ang II, es el péptido más efec-
tivo del SRA cerebral, ejerciendo un efecto tónico
estimulador en el control de la presión sanguínea. No
obstante, la similar afinidad de la Ang II y Ang III por
los receptores AT1 no explica porque la conversión de
la Ang II cerebral a Ang III es un requisito para aumen-
tar la presión sanguínea. Hasta ahora se han dado dos

razones, la primera es que puede haber otros  recep-
tores semejantes a los AT1 específicos para la Ang III,
con un perfil farmacológico similar al del receptor AT1
y la segunda es que es posible que el bloqueo de la
conversión de Ang II a Ang III favorezca la activación
de otras rutas metabólicas que inactiven a la Ang II y
produzca fragmentos de péptido que no puedan unir-
se a los receptores AT1 o AT213,39,40. Pero como
indicábamos con anterioridad, la Ang II y la Ang III tam-
bién estimulan la liberación de vasopresina para
controlar la homeóstasis de líquidos y electrolitos, re-
duciendo la pérdida renal de agua e incrementar la
presión sanguínea37. La inyección de Ang II o Ang III
en los núcleos supraóptico o paraventricular aumenta
la actividad de las neuronas magnocelulares produc-
toras de vasopresina induciendo la liberación de
vasopresina en la sangre33,34. Sin embargo, la actividad
exacta de este péptido no esta clara. Mientras que los
niveles plasmáticos de vasopresina se duplican por la
inyección intracerebroventricular de Ang II, el inhibidor
EC33 de la APA inhibe la liberación de vasopresina in-
ducida por Ang II de una forma dosis-dependiente.
Esto sugiere de nuevo que la conversión de Ang II a
Ang III es un paso necesario para estimular la secreción
de vasopresina10,34.

CONCLUSIÓN

El daño cerebral observado tras el consumo de
etanol puede no estar exclusivamente relacionado con
la regulación de la presión sanguínea, la regulación del
flujo sanguíneo local o el balance de fluidos y elec-
trolitos41.
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