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Effect of chronic undernutrition on postnatal expression
of short-dystrophin in rat brain

Froylan M. Vargas?, José Carlos Guadarrama-Olmos?, Silvia Mariscal, Bertha Segura-
Alegria3, Ismael Jiménez-Estrada®

ABSTRACT

Maternal undernutrition results in impaired fetal and postnatal growth of the newborn and it is associated with
increased risks of developing cardiovascular and metabolic syndrome type diseases in adulthood. Undernourished
offsprings show altered electrophysiological and neurochemical properties producing behavioral, learning and memory
deficits. Dystrophin protein plays an important role as part of a scaffold-signaling associated protein complex
(DAPC), known to contribute to Na*, K*, and Ca?* ion channels modulation, in muscle and brain cells. Short dystrophin
of 71 kDal (Dp71) is the main form identified in neuronal and glial cells which covers most of the scaffolding
functions as shown in muscle cells. The goal of this study was to analyze the postnatal expression of this Dp71 as
a first approach to comprehend the many functional imbalances occurring during postnatal development in the brain
from rats subjected to chronic undernutrition (CU) treatment. We found that Dp71 is present at postnatal day 7
(P7) and attains maximal level of expression at 16 days of age (P16) in the brain of pup rats born from mothers fed
a control diet. In addition, Dp71 protein expression at P7 and P16 was significantly lower in brain samples of pup
rats born from dams under a CU feeding conditions as compared to the values of control groups or 58+13% vs
24+7% and 98+2% vs 57+24%, respectively, and practically no significant differences were observed at P26 and
P45. Our data shows that CU treatment delays expression of Dp71 in the rat brain during the first three wks
postnatally. Since the DAPC contribute to the ionic homeostasis in the cell it is plausible to suggest that Dp71
expression delay causes a rise in [Ca?*]i that disturbs brain cells maturation, thus contributing to the physiological
and neurochemical deficits observed in these CU treated rats.
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Efecto cronico sobre la expresion posnatal de distrofina en el cerebro de rata
RESUMEN

La desnutricién maternal impone la restriccion del crecimiento fetal y del recién nacido ademas de incrementar
significativamente los riesgos de desarrollar enfermedades cardiovasculares y sindrome metabdlico en general. Los
recién nacidos de mamas desnutridas muestran propiedades electrofisiolégicas y neuroquimicas anormales
conduciendo a un comportamiento anémalo, y a una reduccion en la capacidad de aprendizaje y de memoria. La
distrofina es una proteina estructural que forma parte del complejo proteico de senalizacién denominado complejo de
proteinas asociadas a la distrofina (DAPC, por sus siglas en inglés), que tiene un papel importante en la modulacion
de los canales i6nicos del Na*, K*, y Ca2* en la células muscularesy del tejido cerebral. La distrofina corta de peso
molecular de 71 kDal (Dp71) es la forma molecular mas abundante en el cerebro de mamiferos. Es por estos moti-
vos que decidimos analizar la expresion de la Dp71 en el cerebro de rata durante el desarrollo posnatal, tanto de
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ratas con alimento ad libitum (controles) como de ratas sometidas a una dieta restringida durante la gestaciony
posnatal (CU, desnutricién crénica). Observamos que Dp71 esta presente desde el dia 7 posnatal (P7) y alcanza su
nivel maximo de expresion a los 16 dias de edad (P16) en el cerebro de ratitas nacidas de ratas controles. El
analisis de la expresion de laDp71 alos 7 y 16 dias de edad en muestras cerebrales de ratitas desnutridas revel6
una disminucion significativa con respecto a las muestras controles de 58113 vs 24+7% y de 98+2 vs 57+24%,
respectivamente. A los 26 y 45 dias de edad no se observé ninguna diferencia significativa en la expresion de Dp71
entre las muestras CU y las controles con respecto a la Dp71 observada a los 60 dias de edad, considerada como
el control adulto. Estos datos muestran que la desnutricion crénica retarda la expresion de la Dp71 en el cerebro de
rata durante las 3 primeras semanas posnatales. Dado que la Dp71 es la proteina principal de anclaje del DAPC, es
posible plantear la hip6tesis de que el retardo en la expresion de la Dp71 disminuye la formacion del DAPC, afectando
negativamente la maduracion del tejido cerebral debido quizas a un aumento en el [Ca?]i, lo cual conduce a un

desarrollo fisiolégico y neuroquimico deficiente en las ratas sometidas a desnutricion crénica.

Palabras clave: distrofina, rata, cerebro, desnutricion, ratas.

aternal undernutrition results in impaired fetal

and postnatal growth of the newborn and

mposes increased risks of developing diseases
in adult life such as behavioral, learning and memory
deficits, hypertension, cardiovascular diseases, neuro-
degenerative disorders, and non-insulin dependent
diabetes, or the metabolic syndrome type4; as shown
in Duchenne muscular dystrophy (DMD) patients®”.
Indeed, malnourished brain preparations from rats
subjected to a CU diet showed abnormal neuro-
transmitters and receptors levels®t, lower antioxidant
defenses, and develop hipertension early in life'?13; as a
result of increased levels of corticosterone during fetal
and postnatal life*. In addition, prenatal undernourished
rats showed a decrease in the strenght of LTP in the
hippocampal formation throughout its life3, which was
suggested as a putative mechanism for the deficits in
memory and learning in animals exposed to prenatal
undernutrition®®. Thus, it has been proposed that
sustained imbalance in the regulation of [Ca?*]i may be
an important contributing factor of learning and memory
deficits, altered behavior, and neuronal degeneration in
patients attained by undernutrition or DMD disease*"*4,
as evidenced, also, in Alzheimer’s disease model mice
and aged rats516,

Dystrophin protein is the main product of the DMD
gene in mammalian cells’. Brain dystrophin is expressed
in CNS areas involved in cognitive and motor functions,
such as the hippocampus, neocortex, stiatum, and
cerebellum®™17, It has been detected in neurons and glial
cells and it is mostly localized in postsynaptic
densities'®*®, and found to correspond with the C-
terminus of the dystrophin protein of 71 kDa of size
(Dp71)2°. Dp71 is part of an elaborate associated
protein complex (DAPC) in muscle and nerve cells that
bridges the inner cystoskeleton (F-actin) and the
extracellular matrix, through the transmembrane beta-
dystroglycan glycoprotein, functioning as a major
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scaffold-signaling system in peripheral organs™?!, and in
the brain regulating water intake by astrocytes
associated to aquaporin-4%22, DPAC appears to play an
important role on the molecular cascade that regulate
[Ca?*]i in muscle cells?t, and possibly in neuronal and
glial cells during postnatal development and mature
brain®22, Accordingly, DAPC comprises five classes of
proteins: dystroglycans, syntrophins, dystrobrevins,
sarcoglycans and sarcospan, composed each by several
members or isoforms which are assembled around
dystrophin or its autosomal homologue utrophin’2%, In
brain, alfa-syntrophins link the DAPC with Na*, K*, and
Ca?* ion channels®”2!, and possibly with the Ca?*-
ATPase as shown in muscle cells?. Nitric oxide synthase
(NOS) a key modulator of the [Ca?"]i homeostasis is
also associated with the DAPC through the alpha-
syntrophin PDZ binding domain?123,

Moreover, cerebellar granule cells from a
dystrophin-deficient mdx mouse, a murine model of
DMD, showed higher [Ca?*]i levels as compared to
normals?4, and enhanced sensitivity of hippocampal
pyramidal neurons from mdx mice to hypoxic-induced
loss of synaptic transmission*4, and, Purkinje cells of the
mdx mouse showed altered inhibitory input due to a
reduction of GABA-A receptor clusters®'’, Thus, the
DAPC may, also, be a key component of the [Ca?']i
homeostasis modulation in brain cells, such as its
proposed model for muscle cells?* since all its
components and interacting signaling proteins are found
in the brain®61°,
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Therefore, since dystrophin mdx mice showed
higher [Ca?*]i levels in cerebellar neurons as compared
to wild type”?4, and malnourished brain preparations
showed altered electrophysiological properties, such as
reduced hippocampal LTP, decreased ability of callosal-
cortical synapses to perform temporal summation, and
alterations in the excitability of the cortico-spinal tract
and the spinal cord®®? due, likely, to an altered ion
channels modulation, we decided to analyze and compa-
re the expression of Dp71, in brain tissue, during
postnatal development of the rat fed a normal and
undernourished diets. Previous developmental and regio-
nal studies of dystrophin in CNS have shown the
presence of DMD gene protein products of larger
molecular weight, mainly the 400-427 and 110-140
kDa>"?¢, without providing a clear evidence of Dp71
presence in rat brain tissue during early postnatal life?’.
Thus, since Dp71 is the main dystrophin protein form in
adult rat brain it is necessary to clarify its presence
during postnatal development®®, given its putative role
in the ionic environment homeostasis in brain cells, for
optimal synaptic functions®”'’. This report shows a
clear evidence of Dp71 protein expression in early
postnatal development in rat brain, and the effect of CU
on Dp71 postnatal expression in newborn rats, as
judged by western blotting analysis

MATERIAL AND METHODS

Antibodies used in this study were: Polyclonal
antibody (pAb) H4 against C-dystrophin which has been
produced and characterized in detail?®2°, This antibody
was selected on the basis of its large and strong
reactivity pattern in several tissues, from different
species; and Mandra 1, an antibody that recognizes an
epitope located on the 128 amino acids at the end of
the C-terminal domain of the human dystrophin molecule,
amino acid residues 3558 - 3684 (Sigma Chemical Co.,
San Louis Mo.). Actin antibody was also from Sigma
Chemicals Co.

Animals: Two groups of female Wistar rats were
subjected to the following feeding conditions: (a) control
group (Ctrl) consisting of females rats and their offspring
allowed free access of food (Lab Diet, Formulab 5008);
and (b) chronic undernourished group (CU) fed with half
the total amount of the food intake eaten by control
animals starting three weeks before mating, during
pregnancy and lactation periods®=°, After weaning (P21)
offsprings were also fed following their corresponding
dams as to have Ctrl and CU rat groups. All animals had
free access to water and were housed under identical
conditions of temperature (22-24 °C) and standard 12h
light (6.00 - 18.00) and 12h dark (18.00 - 6.00) cycles.

After parturition, the sex and number of pups was
determined and adjusted to 8 males per litter and their
body weight was measured every day. All procedures
were carried out in accordance with the National
Institute of Health Guide for the Care and Use of
Laboratory Animals (NIH Publications No. 8023, revised
1978) and reviewed and approved by the CINVESTAV
Animal Care Committee (SAGARPA NUM-062-Z00-1999,
México).

Brain tissue samples preparation: Newborn rats
aged 7-45 days old were Killed by upper spinal cord
dislocation. Ice-cold saline solution was perfused
through the third ventricle (5-10 mL) after the cave vein
was opened. Brain tissue was carefully removed mid and
upper brain without cerebellum, nor spinal cord.
Dissected fresh whole brain tissue from three rats,
either control (Ctrl) or CU male pups at postnatal 7
(P7), P16, P26 and P45 days of age, was immediatedly
homogeneized in 5 volumes of cold phosphate buffered-
isotonic saline solution (NaCl 0.9% plus potassium
phosphate buffer 10 mM, pH 7.0, at 4°C), or 1 gram of
fresh tissue in 5 mL, using a Potter-Elvehjem with a
teflon pestle (0.1 mm clearance), giving eight up and
down strokes. Homogenates were mixed 1:1 vol/vol
with Laemmli SDS-solubilization solution (2X-con-
centrated) containing: Tris-Cl 125 mM, SDS 2%, Glycerol
10 % and bromophenol blue (BioRad, 4 mg per 100 mL)
at pH 6.9%%32, 2-Mercaptoethanol was added to the
mixed samples, 50 microL per 1 mL of solubilized (4-6°C)
mixture; agitated and stand for 10 min. Solubilized
samples were boiled for 5 min at 98°C (Reactive-Therm,
Pierce). Boiled samples were left 15 min at 4-6°C, then
stored at -20°C. All procedures were performed in a cold
room. Protein content was determined by Bradford's
method as described by Bio-Rad notice, using bovine
serum albumin as standard.

SDS-PAGE and Western Blot Analysis: Proteins of
boiled samples were defrozen and adjusted to 4.0 - 5.0
mg of protein per mL with SDS-solubilization buffer (1X
-concentrated) containing 50 pL of 2-mercaptoethanol
per mL. Samples were mixed and centrifuged for 1 min
at 1000 rpm in an Eppendorf table centrifuge at room
temperature (RT). A tiny pellet was discarded.
Transparent solubilized sample was used for electro-
phoresis; eigthy pg of protein from original homogenate
was applied per well. Sonication was used for the
elimination of lightly-elastic type material whenever
needed. Samples were separated on the SDS-PAGE
according to Laemmli, as described previously332, by
using 7-5 % or 10% separating stacking gel. Acrylamide/
bis-acrylamide ratio was maintained at 30/0.6 (w/w) to
allow the migration of 427 kDa dystrophin and the
optimal separation of Dp71 isoforms. High molecular
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weight standards were used for calibration (Precision
Plus Protein standards, Bio-Rad); then, separated
proteins were transferred to nitrocellulose membrane
(BA83. Schleicher and Schuell Inc., Keene NH, USA),
using a Genie blotter (ldea Scientific Co., U.S.A.), in a
buffer containing Tris 12.5 mM, glycine 60 mM, SDS
0.1%, and methanol 15% (v/v). Then, the nitrocellulose
membrane transfers were stained with Ponceau’s
solution (Sigma Chemical). Non-specific binding sites
were blocked by shaking the blot in TBS containing
Tween-20, 0.05% (v/v), (TBS-T) and dry skim milk 5%,
for two hours at RT; followed by 4 washes in TBS-T 10
mL for 5 min each wash at RT. Dystrophin positive
proteins to specific Dp71 antibodies were
immunodetected with Mandra 1 and pAb-H4 (diluted
1:1000 and 1:3000 fold, respectively, in TBS-T). These
C-terminal Dp71 antibodies have been characterized
previously [28]. Blots were incubated overnight with the
antibody at 4°C (or 1 hr at RT). The membranes were
then washed as described above and incubated in TBS-
T. Proteins were revealed by incubating the membranes
with a peroxidase coupled goat anti-mouse IgG from Bio-
Rad, diluted 1:5000 for monoclonal antibodies and
1:10,000 for polyclonal antibodies. Incubated nitroce-
[lulose membranes were washed as before. The signal
was revealed by enhanced chemiluminiscence (ECL
reagents, Amersham, Life Sciences). Emitted light was
detected by AX-Ray Film (Konica Minolta) in an X-ray
exposure cassette. Immunodetection was done also,
when indicated, with actin antibody, as a control for
protein content in the western blot analysis procedure.
The staining intensity of protein bands was determined
using Kodak Digital Science 1D Image Analysis Soft-
ware. In order to quantify and compare the density of the
different bands for the developmental expression time
course, the Dp71 band intensity for adult levels were
obtained from sixty days old rats fed ad libitum,
representing 100 % of Dp71 band intensity or maximum
protein expression.

Data were analyzed by one-way ANOVA with Tukey
tests. All data are expressed as mean values with their
standard errors (four independent experiments with
several immunobloting assays each).Statistical signi-
ficance was achieved with P d»0.01.

RESULTS

Body weight. Postnatal body weight of pups born
to dams fed with 50% of the food intake eaten by the
Ctrl group was significantly lower than pups born to
dams fed normal diet, containing 23.4% of protein (figure
1 A). CU rats grew at a very low rate as reported
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Figure 1. Body (A) and brain (B) weights of normal (Ctrl) and chronic
undernourished (CU) rats of 7, 16, 26, 45 and 60 days of age.
Values are means + S.E.M., (A) p dd0.005, (B) dd0.01 p, n=4 (n=
independent experiments).

previously?>3°, Brain weight was also significantly lower
in CU animals (figure 1 B). Ctrl and CU male pups were
used at random in groups of three at every chosen
postnatal age: P7, P16, P26, and P45 days old. Indivi-
dual differences between pups of the same group were
diminished by pooling the six halves brains and prepa-
ring the homogenate accordingly. Typical immunoblotting
pattern of the newborn rat brain samples is shown in fi-
gure 2A, using Mandra 1, the molecular mass of the main
and single band was about 71 kDa corresponding to
Dp71. Dp71 band density was maximum in adult brain
samples obtained at 45 and 60 days of age. Figure 2B
shows mean *+ S.E.D. values of Dp71 bands at four
different postnatal days from two different littermates,
pooling the results obtained with Mandral and H4
antibodies. CU produced a significant reduction in
dystrophin protein expression at 7 and 16 days of age
as compared to control groups (58+13 vs 24+7% and
98+2% vs 57+24%, respectively) and this effect was
minor thereafter and without significative difference at
45 days of age. Actin band intensities remained
constant in all samples examined either Ctrl or CU (fi-
gure 2A). There was none significant change in actin
band intensities.
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Figure 2. Immunoblotting analysis of short dystrophin, Dp71, in
extracts from newborn rat brains. Rats were fed either ad libitum
(control rats, Ctrl), or chronically undernourished (CU), and
sacrificed at different postnatal age. (A) Brain samples were
prepared from at P7, P16, P26, P45, and 60 days old, from newborn
rats, either Ctrl or CU. Ctrl samples are lanes 2, 4, 6; CU samples
are lanes 3, 5, 7. Samples of 80 ug of protein homogenate per gel-
lane were developed on a 10% gel. Protein bands were detected by
ECL with antibodies recognizing Dp71 (Mandral or H4). Dp71
band intensity for adult levels were obtained from sixty days old
rats fed ad libitum, representing 100% Dp71-band density or adult
Dp71 levels, line A. (B) Comparative postnatal semi-quantitative
estimation of Dp71 expression from Ctrl and CU rat brain. Bars
show the average values and standard deviation of Dp71 bands
densities from Ctrl (filled bars) and CU (open bars) from five different
western blot analysis using both Mandral and H4 antibodies,
representative of 4 independent experiments, p <0.01.

DISCUSSION

During development neural activity regulate a wide
range of brain growth proceses, including glial
maturation, neuronal differentiation, axon myelination,
and circadian rhythms establishment3113334 Mature
astrocytes support neuronal migration, outgrowth of
axons, and production and secretion of factors that
contribute to brain cytoarchitecture maturation,
modulating neuronal differentiation*223%, where calcium-
dependent cell signaling mechanisms plays a major role
in postnatal organs maturation®36:37,

Little is known, however, of the DAPC putative
role in these developmental processes. This study

presents a clear evidence of Dp71 expression during
postnatal development in rat brain, and shows the effect
of CU on Dp71 protein expression in newborn rat brain.
Dp71 expression follows the normal brain growth pattern
rather than a synaptogenesis developmental pattern as
shown for other pre- and postsynaptic proteins!”3t, CU
delays the appearance of Dp71 in rat brain tissue, this
effect was higher during the lactation periods, e.g. the
postnatal first 3 wk, attaining young adult levels, closely,
at P26 as the control rat brain tissue samples.

Nonetheless Dp71 levels are recovered in adult
malnourished rat brains similar to the Dp71 expression
values observed in control animals, its reduced levels
during postnatal development, before weaning, may
contribute to the alterations of the electrophysiological
properties, abruptly diminishing synaptic plasticity,
neuronal connectivity and maturation*#1422, given its role
as a modulator of the ionic environment in brain cells, as
main component of the DAPC in neurons and glial
cells®2122, Noteworthy, mice deficient for Dp71 showed
reduced levels of DAPC proteins in the brain and altered
inhibitory input to Purkinje cells®*3°. Therefore, delayed
Dp71 expression during postnatal development, in the
brains of CU rats, contribute to the neurochemical
imbalance causing an impairment of learning and
memory functions observed in neonate malnourished
rOdentSi'6‘12'13’4o’41.

Dystrophin enrichment in brain nuclei involved in
cognitive and motor functions, its neuronal localization
mostly in the postsynapsis®!”2° and in isolated
postsynaptic densities!®, suggest its involvement in
synaptic plasticity®'’. In addition, cytoskeletal disruption
appears to alter Ca?* channel kinetics by decreasing the
ability of the DAPC to modulate DHPR and TRPC
calcium channels leading to an increase of cytosolic
calcium in muscle cells?+4°42 and likely, in brain cells
which would alter synaptic function®2°43 and water
homeostasis by glial cells?2.

Undernutrition induce changes in these neuron-glia
interactions diminishing neurotrophic and glial factors
such as IGF-1, IGF-11#4, glial fibrillary acidic protein
(GFAP), vasoactive intestinal peptide and vasopre-
ssin®3443 highly necessary for differentiation of
astrocytes, neuronal maturation and synaptogenesis
during early postnatal life in the rat®%35, Interestingly,
Dp71 protein postnatal expression pattern showed in
this study resembles the developmental expression of
the astrocyte GFAP, which protein expression is also
delayed in cortical and hypothalamic structures by
undernutrition*. In addition, Dp71 expression favors
PC12 cells differentiation induced by NGF, since Dp71
antisenseRNA blocked NGF effect, while senseRNA
produced an overexpression of Dp71 promoting an
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increased outgrowth of neurites branches in the
presence of NGF?8. Therefore, postnatal Dp71
expression represents an important DAPC component
for pursuing future studies on this scaffold-signaling
protein complex involvement in ion transport modulation
and brain nuclei maturation under CU and prenatal
undernutrition®4648,

In summary, CU treatment reduced Dp71
expression in rat brain during early postnatal life (P7 -
P16) delaying the appearance of this important
component of the DAPC in developing rat brain,
contributing to the overall alterations observed in the
malnourished offspring.
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